




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第五 :已給sin0.3367高度0壓強(qiáng)kgf1200例5-3:已知直升飛機(jī)旋轉(zhuǎn)機(jī)翼外形輪廓線上某些點的kk1082-93-4-5-6-0700平均增加節(jié)點至121個,在xoy平面上繪制出較光滑的機(jī)翼外形曲線例5-4:已知函數(shù)ux(x1yy1,定義域0,1]2,依據(jù)不同的離散剖分?jǐn)?shù)據(jù)(88,161632326464試?yán)L出各個函數(shù)圖 近似函數(shù)圖xy(x?1)01
y
0x
0101
10誤差函數(shù)x01
1問題的在實際問題中常遇到這樣的
yfx)某個區(qū)間[a,b]上是存在的。但是,通過觀量或試驗只能得到在[a,b]區(qū)間上有限個點x0,, 上的函數(shù)值
f(xi),(i0,1,,或者yfx)的函數(shù)表達(dá)式是已知的,但卻很x y 函數(shù)yf()表達(dá)式未知在一些點處測得函數(shù)值:yx y 求一個簡單易算的函數(shù)g(x 使g(xi) i0,1,在x0xn]上,gxfx)gx)稱為fx)的插值函數(shù)g(x)g(x)
§5.1Lagrange多項式一 二 三x y fx)在[ax y yif(xi innx
axa n(xi)
(i0,1,2,n)
由插值條件nxi
(i0,1,2,n)nai(i0,1n應(yīng)滿足方程a axax2axna axax2axn a ax2axn 系數(shù)矩陣的行列式為范德蒙特行列式,n1個互異節(jié)點上的n次插值多項式存在唯一插值多項式的誤差5.1x0x1,xn是[ab]上n1個互異節(jié)點,nx)是fx)過這組節(jié)點的n次插值多項式若fxC(n1)[ab],則對任意的x[ab有RR(x)f(x)n(n((nn1((a,nn1xxxiif(n1)(f(x)T(x) (xx
O(x, (n 證明:RnxfxnRn(xi)0(i
nRn(x)K(x)(xxinin任意固xxi(i構(gòu)造(tRn(tKx(txii(t)有n2個不同的根x,x0,,反復(fù)利 定理,存(x(a,b)使得 (x)(即R(n1)()K(x)(n1)!即 f(n1)()(n1)()K(x)(n1)! f(n1)( f(n1)(
K(x) (nR(x) x(xx (n1)
i當(dāng)xxi(i0,1,,n)時顯然成立 證畢 當(dāng)n1 l(x)x x 1
l1(x)1
xx0x1x0x xy
x x
x x 1L(x)1
y1
(xx)x1x0 x x x x x x x x 000100 li(xj) in
i,j Ln(x)yili(iLn(x)為滿足插值條件(*)的n次插值多項式li有n個 x0x1?inlixCixx)xx)xxn)Cixxjn j
jjli(xi)1
jji(xixjjl(x)
(xxjnnjnnnj n
(xxjijj
(
xj
jj
(
xj稱lix)(i0,1n)為n次Lagrange插值基函數(shù)nLn(x)yili(xni稱Lnx)為n次Lagrange插值多項式n
(xxjnjn注:1xi)xjj
xj
li(x)
j'n1(xiLagrangel(x)
(xx0)(xx2
l(x)(xx0)(x (xx)(xx
(xx)(xx l1(x
l2(
l0(xl(x)
(xx1)(xx20 (0
)(
x2LagrangeL(x)
(xx1)(xx2
f(x)
(xx0)(xx2
f(x)
(xx0)(xx1
f(x
0x1)(x0x2
(xx)(x
(
x)(xx n=1,2,31次Lagrange插值(插值節(jié)點x0,x)線性LL(x)Lf(x)L(x)f(x)x10011xf(x)x0f(x101x102次Lagrange插值(插值節(jié)點x0x1x)拋物線LL(x)2(xx)(xx(xx1)(xx2 f(x)(xx0)(xx20 (xx)(xxf(x)(xx0)(xx1)11012(xx)(xxf(x220213次Lagrange插值(插值節(jié) x0,x1,x2,xLL(x)3(xx1)(xx2)(xx3(x0x1)(x0x2)(x0x3(xx0)(xx1)(xx3f(x)0(xx0)(xx2)(xx3(x1x0)(x1x2)(x1x3(xx0)(xx1)(xx2f(x1(xx)(xx)(xxf(x)2f(x3202123(xx)(xx)(xx303132xyln 取x0 L(x)2.3979x122.4849x 11 12ln11.5L(11.5)2.397911.5122.484911.511Rn(x) (n1)!Rn(x) (n1)!f(n1)(R1(x)
(x11)(x
1
(ln(ln
x0 x1 x2L(x)(x12)(x13)2.397(x11)(x13) (1211)(12(x11)(x12)ln11.5L2(11.5)R2(11.5)
(lnx)
2 取x0R1
(11.511)(11.5
2
0.5 ...18 取點x011,x112,x2f(3)(x)x3R2
(11.511)(11.512)(11.5f(3)(6 0.5f(3)(6
10413
8 例已知函數(shù)fx56x324x25在21227的函數(shù)值,解:設(shè)其三次插值多項式為L3(xR3(x)f(x)L3(x)
f(4)()
4(x) L3(x)fn例2 設(shè)x0,x1,,xn為n1個互異節(jié)點,li(x)(i0,1,,n)為這組節(jié)點上的Lagrange插值基函數(shù),試證明nli(x)i 證明:取f(x) Ln(x)f(xi)li(x)li 且f(n1)(nRn(x)f(x)Ln(x) (n1)!n1(x)n Ln(x)li(x)f(x)i§5.2Newton P(x)ff1f0(xx (ff(x)y x1
Pn(x)a0a1(xx0)a2(xx0)(xx1an(xx0)(xxn1其中ajj0,1,n)為待定系數(shù),可由Pxjfj確定Pn(x)a0a1(xx0)a2(xx0)(xan(xx0)(x n(0)a0 P(x)aa(xx) P(x)aa(xx)a(xx)(xx)
a0 f a1
x1xa f2 f0 f1 fa x2x x1x2 x2x12 依次可得到a3,a4,,an 定義:差商設(shè)由函數(shù)fx一組互異的節(jié)點x0x1, f(xi)f(xj)fx,x xixfx)關(guān)于點xixj的一階差商(均差fxi,xjfxj,xkfx,x,xxi
k為fx)關(guān)于點xi,xj,xk的二階差商(均差
fx,x fx,x,xfx,x,x x0
為fx差商的性質(zhì)
x0x1xk的k線性性質(zhì)fxaxbxfx0,x1,,xkax0,x1,,xkbx0,x1,,xkk差商可以表示成函數(shù)值的線性組合,即kfx,x,,x
f(xi k
(xik
k 其中k1xixixjji
,n次多項式函數(shù)關(guān)于點x,xi的一階差商為n-1次多項式。事實上設(shè)Pnx)是n次多項式,PxPnxPnxi)仍是n次多項式,且Pxi)0故P(x)(xxi)Pn1(
Px,x
(x)i xi
計算各階差商可用差商表f(xi一階差二階差三階差商xfxfxf(x2fx1,x2xf(x3f由差商的f(x)f(x0)(xx0)fx,x0f[x,x]f[x,x](xx)fx,x,x f[x,x,x]f[x,x,x](xx)fx,x,x,x f[x,x,, ]f[x,x,x](xx)fx,x,,x
f(x)(xx)(xx)(xx)fx,x,x,x Rn(Nn( f(xi)Nn(xi)R(xi)Rn(Nn(Nn(x)f(x0)(xx0)fx0,x1(xx0)(xx1)fx0,x1,x2(xx)(xx)(x
)fx,x,x
ff(x)(xx)fx,x(xx)(xx)fx,x,x00 01 (xx)(xx)(x01)fx,x,x nNn(x)稱為f(x)的n f(x)的n 插值多項式Nn(x)N(x)f(x)(xx)fx,x(xx)(xx)fx,x,x (xx)(xx)(x
) x,x Newton
R(x)(xx)(xx)(xn01f(n1)(xn)(nR(x)(xx)(xx)(xn01f(n1)(xn)(n Lagrange插值余項Ln(x)Nn(xn1(x)fx,x0,x1,xn
(n1(n
n1(xff(n)(fx0,x1,,xn其 minxi maxxi0i f(xixf(0)1xf(1 (xx0xf(x2)fx,x fx,x,x 1(xxjxf(x3fx,x fx,x,x fx,x,x,x 2(xxjjxyln試 法求ln11.5近似yiln1x--N1(x)2.39790.0870(xln11.52.39790.0870(11.511)N2(x)2.39790.0870(x11)0.0035(x11)(x例:已知f(x)的函數(shù)表,求四次 插值多項式,計算f(0.596)的近似值,并估計誤差.做差商表一階差二階三階差四階差N4(x)0.410751.116(x0.4)0.28(x0.4)(x0.19733(x0.4)(x0.55)(x0.03134(x0.4)(x0.55)(x0.65)(xf(0.596)N4(x)|R4(0.596)
f[0.4,0.55,0.65,0.8,0.9,0.596](0.596xii一階二階三一階二階三階差四階差-
-差
xix0i
(i0,..., fi
fi
fkfi k1kifik
fif
fikfk1fk1iiik
1
其中 f(i
h2i ii ikfkifik12i2f(xixf(0)xf(1xf(x2)2f(2f xf(x32f(2f 例 (afbg)afbk2k
fk
2fk
f
f f
2fk
f n
nnn (1)j
fk(1)
fk nk
j
j其中
jn
C
n(n1)...(njj j j f[x,x]
kfk!hk
f[xn,
,,
nk]
kfnkf(k)() 由導(dǎo)數(shù)和差商的關(guān)系fx0,xk
(k即得k等距節(jié)點插值Nn(x)f(x0)f[x0,x1](xx0)...f[x0,...,xn](xx0)...(xf(n1)(Rn(x)
(n n1(xxx0thN(x)N(xth)f
...t(t1)(tn1)n
Rn(x)
t(t1)...(tn)(n1)!
f(n1)() (x,xNn(x)f(x0)f[x0,x1](xx0)...f[x0,...,xn](xx0)...(xf(n1)(Rn(x)
(n n1(x后差公式,將節(jié)點順序倒置設(shè)xxntNn(x)Nn(xnf
t(t1)2ft(t1)(tn1)n
Rn(x)
t(t1)...(tn)(n1)!
f
(x0,xnf(xixf(0)1xf(1txf(x2)2f(2f (tj)2!j0xf(x32f(2f (tj)3!j01t1(t (t小日型插值余項(導(dǎo)數(shù)型)f(n1)Rn(x)(n1)! 型插值余項(差商型)
Ln(x)f(xi)li(xiLn(x)f(xi)li(xin 日插值 插值的比 型插值余項公式對fx)是由離散點給出或f多項式插值理論的深入日插值多項式和插值多項式是否有收斂性R(x)R(x)f(x)Pn(x)f(n1)((nin(xxi插值就是數(shù)值近的一種,而數(shù)值近,為得在代數(shù)插值中,給定函數(shù)fx)在n1個不同的節(jié)點,得n次插值多項式的余插值多f(x)=Interpolationat[0二次插值多f(x)=Interpolationat[01三次插值多f(x)=Interpolationat[014Runge函f(x)
125x2Runge函f(x)
125x20附近插值效果是好的,即余項而振動。 而且高階插值還是不穩(wěn)定的。(版數(shù)值分析有證明) 問題:設(shè)在a,b上給定n1個不同的節(jié)點ax0x1xn1xnyif(xi)(i求函數(shù)(x)使得(xi) (i0,1,,稱x)為fx)過節(jié)點x0x1,xn的分段線性插值函數(shù)表達(dá)(x)xxixyxiyixx,iiixiii(xi) f(x)
1
x (ii f i012345f對x(x)x11.00000x00.5000010.5x01 10類似地10.8(x)0.40.22354
xxx(2,x(3,x(4,f(4.5)(4.5)0.140260.020364.50.04864與真值f(4.50.04706誤差估定理5.2設(shè)ax0x1xnb,x)為fx)過這組節(jié)點的分段線性插值多項式,若fxC2ab則對任意x[a,b],RR(x)f(x)(x)hmaxf(28axhmaxxi1xi(xxi)(x證明(xxi)(xR(x)( x
xix
f
f(
f(22
xix
8a 另一個思 特(Hermite)問題
,
,
為n1個互異節(jié)點
y y y y y yyif(xi (i求至2n1次多項式Hx使其滿足插值條件H(xi)yi, H(xi) (iHx)為fx)的Hermite插值多項式
h(x) j
hi(xj)
j
hi(xj)
j
H
)
j
Hi(x)
H'(x)
j
1 j
H(x)inH(x)in h(x)yii(x)g(a)
g'(a)0g(x)(xa)2h(x)設(shè)hx)abxx)l2
hi(x)
由h(x) h(x) 由 a b2li(xi (i0,1,,h(x)12l(x)(xx)l(2iiiii(i0,1,,
H(x)C(xx)l2(
Hi(x) Hi(
)
C
H(x)(xx)l2(i (i0,1,hh(xi12l(x)(xx)l(xi2i i(i0,1,,HH(x)(xx)l2(iii(i0,1,,n)0 特別地,n1 l(x)x l(x)0 xx0 0x0h(x)(1-0
x
)(xx1
0H(0
(xx)
x x0
x0
0x001l(x)1
x
l
) x1 x1 h(x)(1
x
)(xx0
H(
(xx
x x x x 0h(x)(1-0
xx0)(
xx1
H(x)(xx)(
xx1x0
x0
x01h(x)(11
x
)(xx0
H(x)(xx
xx00000x1
x1
x111∴兩11HH(x)(12xx0)(xx1)2y(12xx1)(xx0)2xx0xx110010110(xx)(xx1)2y(xx)(xx0)20x0101x110求法二(降階法Hx)Nnx) H(x)Nn(x)Pn(x)n1(x)n其中n1(x)(xxi N(x)為f(x)過x0,x1,,xniNn(xi)f(xi) (i0,1,,Pnx)n再由導(dǎo)數(shù)條H(xi)確定Pnx)的系數(shù)事實上,Pn(x)只需滿
H(x)Nn(x)Pn(x)n1(H(xi)Nn(xi)Pn(xi)n1(xi)i0,1,,
(ixiyixiyi003119h(i12l(x)(iix)l(2ii(i0,1,,HH(x)(xx)l2(i (i0,1,
l0(x)1 l1(x)1h(x)(12(x1))x23x22x31H0(x)x(1x) H1(x)(x1)xH(x)h1(x)3H0(x)9H1(x)10
12x23例:Hermitexi yi
N(x)010(x0) 1設(shè)Hxx(abxx0x1)H(x)1bx(x1)(abx)(x1H(0)1a H(1)1aba2,b H(x)x(10x2)x(x1)10x312x2誤差定理5.3設(shè)x0x1,xn為[ab]上的互異節(jié)點Hx)為fx)過這組節(jié)點的Hermite插值多項式若fxC(2n2a則對任意的x[abf(2n2)(R(x)f(x)H(x) (x (a,b)(2n2)! n1f(4)(R(x)
(xx)2(xx R
)0,R(
)
RxKx)
(
x
令(t
f(t)H(t)
顯然(t)C(2n2)
i且(x)0,(x) (ii(t)f(t)H(t)K( (t (t (xi)
f(xi)H(xi(i因此(t)在[a,b]上有2n2個零點.依次類推 定理,知(2n2)(x)在(a,b)內(nèi)至少存在一個零點(t)f(t)H(t)K(x)
(t(2n2)(t)f(2n2)(t)K(x)(2n(a 使(2n2)()f(2n2)()K(x)(2n2)! K(x)
f(2n2)((2n R(x)
f(2n2)((2n
2
(定理5.4 nfxC1[a,b則fx)在互異節(jié)點xx, n處的2n1次Hermite插值多項式唯一Hx)是Hx)的2n1次HermiteH(2n2)( H(x)H(x)
(2n2)!n1(x)因此Hermite插值多項式是唯一若fx)是次數(shù)不超過2n的多項式,Hx)fx)的過任意n1個節(jié)點的Hermite插值多項式Hx)fx)nhi(x)n分段三次Hermite x0x1 yif(xi H(xi)yi H(xi) (i0,1,,在每個小區(qū)間 xi1](i0,1,,n)上,H(x)H(x)(1
x
)(xxi1)2y(12xxi1 x
)2 x
x
ii (xx)(xxi1)2y(x
)(x
i i )2ixii
i
i
xi1
ix[xi,xi1 i0,1,n1誤差估計R(x) f(x)H(x)
4hm f(4)(xhhmax(xi1xi0in
384ax事實上,當(dāng)xxi,xi1](xx)2(x R(x)
f(x)H(
i
xix
f(4)(同時|(xx)(x )|(xi1xi i Hermite插值的一般fx)在n1個互異節(jié)點處x0x1,xn的函數(shù)值yifxi)(i0,1,n)yif(xi)(k H(xi)iH( )i
(i0,1,,(k0,1,,m) 設(shè)H(x)Nn(x)Pm(x)n1(Pmx)iH(x)yik
(k0,1,,m)5.5:(誤差估計若fx)C(nm2)nm1次多項式Hx)滿足插值條件iH(xi)yiH(x )yi 則x[a,
(i0,1,,(k0,1,,f(nm2) R(x)f(x)H(x)
(nm2)!n1(x)(xxik(a,m證明:R(xi)0,R(xi) 令R(x)K(x)n1(x)(xxi k mixx(i0,1,n)(tf(tH(tK(x)n1(t(txii顯然(t)C
(x0,(xi
(i(t)在[ab]上至少有n1個異于x和xi(i0,1,n)的零(t)(t ) (t)(t (t)f(t)H(t)K(x) k l0k
f(xi)H(xi
即(xi0kk因此(t)在[a,b]上有nm2個零點.反復(fù) 定 (a, 使f
(nm R(x)
f(nm2)()(nm2)!
n1(x)(xxikk例求滿足下列表中插值條件xi012f(xi13f'(xi15的四次插值多項式P4x并導(dǎo)出其余項的表達(dá)式設(shè)fx)在插值區(qū)間上具有直到五階連續(xù)導(dǎo)數(shù))思路用降階法先求過x0,x1,x2的插 多項式N2(設(shè)P4xN2x(axbxx0xx1xx2其中系數(shù)a、b,由導(dǎo)數(shù)條件確解:降階 先作插商fxi 一階差商二階差商0111x2343x(xN2(x)f(x0)f[x0,x1](xx0)f[x0,x1,x2](xx0)(x12x3x(x1)3x25x4Px3x25x1(axb)xx1)(x44P(x)4ax33(b3a)x22(2a3b3)x(2b4
012f(xi13f'(xi15由
即P(2) 即
ab02ab1
a得b得 P4(x)x44x32x23x余項表達(dá)式R(x)f(x)P4(x)
f(5)()
x(x1)2(x2)
(0,2)例:求符合表值的插值多項式并給出插值余項012212---6個條件,可確定惟一一個5次多項式P5(x滿足函數(shù)值條件的2次插值多項式
N2(x)x22x用降階法
設(shè)Px)Nx(ax2bxcxx1x 5P(x)x22x2(ax2bxc)x(x1)(x5P5(x)(2x2)(2axb)x(x1)(x(ax2bxc)(3x265P(x)20ax3(12b36a)x2(12a4b6c)54b6c由P(1
c1得 abc
a0122012212yy
3c1
ci5P(x)x22x2(4x23x)x(x1)(x54x515x417x35x22x余項為:f(x)P(x)f(6)()x(x1)(x
(0,§5.5樣條從六十年始,首先由于航空、造船等工程設(shè)計樣條函數(shù)的已知[ab]的一個分劃ax0x1xnf(xi)yi(i函數(shù)S(x)滿在每個小區(qū)間xi,xi1](i0,1,n1)上Sx)是m次多項式S(x)C(m1)[a,則稱S(x)為關(guān)于分劃的m次樣條函數(shù),其圖形稱為樣條曲線三次樣條已知ax0x1xnf(xi)yi(i求函數(shù)S(x),使S(xi) (i在每個小區(qū)間xi,xi1](i0,1,n1)上S(x)是三次多項式記為Sjx即Sx)Sjx),xxj,xSjx)三次多S(x)C(2)[a,則稱S(x)為關(guān)于f(x)的三次樣條函設(shè)SxjMjj0,1,n),hjxj1xjj0,1,n1)Sj(x)
j
xxjh
M
xxh
x[xj,xj S(x)
(xxjj
(x
) )
(xxj)
(xxj1
Mh2
Sj(xj)yj,Sj(xj1)Mh2jjC
j 6
yj1
6SS(x)(xxjj(xj(xxj(x)12jjhjhjCC1M 6CM22 6jSj(x)
(xxj6hj
M
(x
))j(yj1
j j6
xxhj
(yj
M xjjj hj
j
由條 Sj(xj0)Sj1(xj 得關(guān)于參數(shù)的方程組jMj12MjjMj1c (j1,2,,n其 j
hj1hj1hj
1
hj1hjjh 6(yj1yjh
y
yj1 hhj h j邊界條件端點處的導(dǎo)數(shù)值S(ay0S(b端點處的二階導(dǎo)數(shù)值S(ay0S(b周期邊界條件S(a0)S(b0),S(a0)S(b 0
M
c0
2 2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 掛車租出合同6篇
- 場地有償使用合同7篇
- 公寓式房屋轉(zhuǎn)租合同
- 廣告制作安裝合同書
- 臨街商鋪租賃合同
- 工程降水分包合同
- 土地利用規(guī)劃的制定與執(zhí)行指導(dǎo)書
- 員工租賃車輛協(xié)議
- 信封印刷合同6篇
- 圍墻工程包工合同
- 護(hù)理人力資源配置原則及調(diào)配方案
- 2023級武漢大學(xué)臨床醫(yī)學(xué)畢業(yè)考試試卷
- 2024年衡水市安平縣小升初數(shù)學(xué)高頻考點檢測卷含解析
- 人教版數(shù)學(xué)二年級下冊全冊核心素養(yǎng)目標(biāo)教學(xué)設(shè)計
- 2024年蘇州市職業(yè)大學(xué)單招職業(yè)適應(yīng)性測試題庫完整版
- 【特級教師上優(yōu)課】《黃河頌》名師課件
- 鋁合金門窗安裝施工工藝詳解
- 《包裝設(shè)計》課件-包裝設(shè)計發(fā)展的歷史
- 全國保密宣傳教育月課件
- 醫(yī)療器械經(jīng)營企業(yè)GSP培訓(xùn)
- 語言藝術(shù)訓(xùn)練智慧樹知到期末考試答案2024年
評論
0/150
提交評論