2023年相似三角形的判定教案_第1頁
2023年相似三角形的判定教案_第2頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

PAGEPAGE20相似三角形的判定教案 教案能夠展現(xiàn)出教師在備課中的思維過程,并且顯示出教師對課標(biāo)、教材、學(xué)生的理解和把握的水平以及運用有關(guān)教育理論和教學(xué)原那么組織教學(xué)活動的能力。下面是給大家整理的相似三角形的判定教案5篇,希望大家能有所收獲!相似三角形的判定教案1掌握三邊成比例的兩個三角形相似和兩邊成比例且夾角相等的兩個三角形相似這兩個判定三角形相似的定理.閱讀教材P32-34,自學(xué)“探究2〞、“探究3〞、“思考〞與“例1〞,掌握相似三角形判定定理1與判定定理2.自學(xué)反應(yīng)學(xué)生獨立完成后集體訂正①如果兩個三角形的三組邊對應(yīng)成比例,那么這兩個三角形.②如果兩個三角形的兩組對應(yīng)邊的比相等,并且相等,那么這兩個三角形相似.③以下是兩位同學(xué)運用相似三角形的定義判定兩個三角形是否相似,你認(rèn)為他們的說法是否正確為什么并寫出你的解答.判斷如下圖的兩個三角形是否相似,簡單說明理由.甲同學(xué):這兩個三角形的三個內(nèi)角雖然分別相等,但是它們的邊的比不相等,ACAB≠≠IJHJBC,所以他們不相似.HI乙同學(xué):這兩個三角形的三個內(nèi)角分別相等,對應(yīng)邊之比也相等,所以它們相似.注意對應(yīng)關(guān)系,可類比全等三角形中找對應(yīng)邊和對應(yīng)角的方法.活動1小組討論例2如圖,DE與△ABC的邊AB、AC分別相交于D、E兩點,假設(shè)AE=2cm,AC=3cm,AD=2.4cm,AB=3.6cm,DE=4cm,那么BC的長為多少3解:∵AE=2cm,AC=3cm,AD=2.4cm,AB=3.6cm,∴AEAD2==,而∠A=∠A,ACAB3∴△ADE∽△ABC.DEAE=.BCAC4又∵DE=cm,342∴3=,BC3∴∴BC=2cm.運用相似三角形可以進(jìn)行邊的計算.活動2跟蹤訓(xùn)練(獨立完成后展示學(xué)習(xí)成果)1.如圖,在□ABCD中,AB=10,AD=6,E是AD的中點,在AB上取一點F,使△CBF和△CDE相似,那么BF長為多少在要使判斷的兩個三角形相似時,有一個角相等的情況下,夾這角的兩邊的比相等時有兩種情形,不要只考慮一種情形,而無視了另一種情形.2.如下圖,DE∥FG∥BC,圖中共有相似三角形()A.1對B.2對C.3對D.4對按照一定的順序去尋找相似三角形.活動3課堂小結(jié)學(xué)生試述:這節(jié)課你學(xué)到了些什么相似三角形的判定教案2相似三角形的判定1.兩個三角形的兩個角對應(yīng)相等2.兩邊對應(yīng)成比例,且夾角相等3.三邊對應(yīng)成比例4.平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與原三角形相似。相似三角形的判定方法根據(jù)相似圖形的特征來判斷。(對應(yīng)邊成比例,對應(yīng)邊的夾角相等)1.平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似;(這是相似三角形判定的引理,是以下判定方法證明的根底。這個引理的證明方法需要平行線分線段成比例的證明)2.如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似;3.如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個三角形相似;4.如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;5.對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形(用定義證明)絕對相似三角形1.兩個全等的三角形一定相似。2.兩個等腰直角三角形一定相似。(兩個等腰三角形,如果頂角或底角相等,那么這兩個等腰三角形相似。)3.兩個等邊三角形一定相似。直角三角形相似判定定理1.斜邊與一條直角邊對應(yīng)成比例的兩直角三角形相似。2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,并且分成的兩個直角三角形也相似。射影定理三角形相似的判定定理推論推論一:頂角或底角相等的兩個等腰三角形相似。推論二:腰和底對應(yīng)成比例的兩個等腰三角形相似。推論三:有一個銳角相等的兩個直角三角形相似。推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應(yīng)局部成比例,那么這兩個三角形相似。推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應(yīng)局部成比例,那么這兩個三角形相似。相似三角形的判定教案3本節(jié)課的教學(xué)設(shè)計主要從以下三個方面來考慮的:一、尊重學(xué)生主體地位本課以學(xué)生的自主探究為主線:課前學(xué)生自己比照例線段的運用進(jìn)行整理。這樣不僅復(fù)習(xí)了所學(xué)知識,而且可以使學(xué)生逐漸學(xué)會反思、總結(jié),提高自主學(xué)習(xí)的能力;課堂上學(xué)生親身體驗“實驗操作—探索發(fā)現(xiàn)—科學(xué)論證〞獲得知識(結(jié)論)的過程,體驗科學(xué)發(fā)現(xiàn)的一般規(guī)律;解決問題時學(xué)生自己提出探索方案,學(xué)生的主體地位得到了尊重;課后學(xué)有余力的學(xué)生繼續(xù)挖掘題目資源,開展的眼光看問題,觀察運動中的“形異實同〞,提高學(xué)習(xí)效率,培養(yǎng)學(xué)生思維的深刻性。2教師發(fā)揮主導(dǎo)作用在探究式教學(xué)中教師是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者、共同研究者,鼓勵學(xué)生大膽探索,引導(dǎo)學(xué)生關(guān)注過程,及時肯定學(xué)生的表現(xiàn),鼓勵創(chuàng)新,哪怕是微小的進(jìn)步或幼稚的想法都給予熱情的贊揚。備課時思考得更多的是學(xué)生學(xué)法的突破,上課時教師只在關(guān)鍵處點撥,在缺乏時補充。教師與學(xué)生平等地交流,創(chuàng)設(shè)民主、和諧的學(xué)習(xí)氣氛,促進(jìn)教學(xué)相長。3提升學(xué)生課堂關(guān)注點學(xué)生在體驗了“實驗操作——探索發(fā)現(xiàn)——科學(xué)論證〞的學(xué)習(xí)過程后,從單純地重視知識點的記憶、復(fù)習(xí)變?yōu)橛幸庾R關(guān)注學(xué)習(xí)方法的掌握,數(shù)學(xué)思想的領(lǐng)悟。如在原問題的取點中教師小結(jié)了從特殊到一般的歸納,學(xué)生在探究矩形的比值時就能意識地把解決特殊問題的策略、方法遷移到解決一般問題中去。在課堂小結(jié)中,學(xué)生也談到了這點體會,而且還感悟了一題多解、一題多變等數(shù)學(xué)學(xué)習(xí)方法。相似三角形的判定主要介紹了三種方法以及相似三角形的預(yù)備定理,從上下來的結(jié)果來看,不是很理想,絕大局部學(xué)生對定理的應(yīng)用不是很熟練,特別對于兩邊對應(yīng)成比例且夾角相等不能靈活運用,夾角也不能準(zhǔn)確找到.我想問題的主要原因在于學(xué)生對圖形的認(rèn)知不深,對定理的理解不透,一味死記結(jié)論.不能理解每個量所表示的含義.我想在下一階段中應(yīng)培養(yǎng)他們認(rèn)識圖形的能力,合情推理的能力,爭取這方面有所提高。相似三角形的判定教案4最近,我們九年級學(xué)完了?相似三角形的判定?的內(nèi)容,相似三角形是初中數(shù)學(xué)學(xué)習(xí)的重點內(nèi)容,對學(xué)生的能力培養(yǎng)與訓(xùn)練,有著重要的地位,而“相似三角形判定定理〞又是相似三角形這章內(nèi)容的重點與難點所在。在本章教學(xué)中,主要教學(xué)目標(biāo)是讓學(xué)生在親自操作、探究的過程中,獲得三角形相似的判定方法;培養(yǎng)學(xué)生提出問題、解決問題的能力。2022年12月10日,我在九年級二班剛好就上了?相似三角形的判定?第一課時的內(nèi)容。在本節(jié)課的教學(xué)中,我是通過平行線分線段成比例定理引入教學(xué)的,先讓學(xué)生畫三條平行線,再畫兩條相交直線與其相交,從而得出得出了一些線段,并再讓學(xué)生自己操作:量一量、算一算、比一比,從圖形中判斷,得出那些結(jié)論。整個教學(xué)過程進(jìn)展較為順利,根本完成了教學(xué)任務(wù)。在本節(jié)課的教學(xué)中,我認(rèn)為以下這幾個方面做得較好:1、教學(xué)引入照顧到了到多數(shù)的同學(xué),培養(yǎng)了學(xué)生的動手測量和計算能力。利用三角板畫平行線、相交線,通過測量比照,學(xué)生根本能全員參與,調(diào)動了學(xué)生學(xué)習(xí)的興趣和積極性。學(xué)生更易于從圖形當(dāng)中得到結(jié)論,這樣引入能很好的使學(xué)生體驗到生活中的數(shù)學(xué)知識。通過后來練習(xí)及作業(yè)反應(yīng)、九年級四班的同學(xué)也比擬容易得出了平行線分線段成比例定理這個結(jié)論,說明這種引入的方法是成功的。2、對教學(xué)內(nèi)容進(jìn)行了合理整合。把相似三角形的判定方法放到下一節(jié)課學(xué)習(xí),使學(xué)生對相似三角形的識別方法有個整體的認(rèn)識,然后再利用第二、三節(jié)課穩(wěn)固深入,杜絕傳統(tǒng)的“學(xué)生在一節(jié)課內(nèi)學(xué)完一個知識點就做相應(yīng)的練習(xí),模仿套用知識而不需選擇,當(dāng)學(xué)完全部相似知識點進(jìn)行綜合練習(xí)時,容易產(chǎn)生混淆〞的現(xiàn)象。本節(jié)課只學(xué)習(xí)了平行線分線段成比例定理的內(nèi)容,以及由此演變而形成的“A字型〞圖和“X型圖〞從一開始就擺脫學(xué)生的依賴心理,把問題拋給學(xué)生,有效的鍛煉了學(xué)生的思維,同時還利用全等三角形的識別類比相似三角形的識別,學(xué)生容易理解。3、注意到了推理的邏輯性和嚴(yán)密性。教學(xué)中在結(jié)論的推導(dǎo)得出過程中,注意了數(shù)學(xué)符號語言的應(yīng)用和書寫,保證了證明的標(biāo)準(zhǔn)性和作圖的合理性。這一點主要表現(xiàn)在“A字型〞圖的證明上,學(xué)生通過幾分鐘的短暫討論,書寫得出這個定理。在學(xué)生親自操作、探究的過程中,獲得三角形相似的第一個簡單的識別方法;培養(yǎng)學(xué)生提出問題、解決問題的能力;從整堂課學(xué)生的表現(xiàn)看到,這節(jié)課根本上實現(xiàn)了以上目標(biāo)。本節(jié)課盡管在以上幾個方面做得較為成功,但仍然有些地方值得商榷。課后,經(jīng)過教研組同志的集體評課以及自我反思,認(rèn)為需要從以下幾個方面改良:1、在平行線分線段成比例定理的得出過程中,更應(yīng)當(dāng)注意圖形的一般情況,不應(yīng)當(dāng)以點帶面。表現(xiàn)在如果兩線相交構(gòu)成的是直角梯形這種情況,而在課堂教學(xué)中,由于時間關(guān)系、學(xué)生關(guān)系,在上課作圖未涉及到這種情況,這一點需要改良。2、在證明“A字型〞圖的結(jié)論過程中,沒有必要證明DE是三角形中位線這種情況,因為它的證明方法和后面的都相同。如果這樣做的話,會浪費大量的時間,導(dǎo)致課堂教學(xué)前松后緊。3、有些學(xué)生操作計算的速度太慢了,沒有時間等他們探索得出結(jié)論,而大多數(shù)的同學(xué)已經(jīng)得出了結(jié)論。這樣可能使他們不能充分理解這節(jié)課的內(nèi)容。4、教學(xué)的方式過于單一,學(xué)生的參與面較低。主要是我沒有調(diào)動好他們的情緒,說明我對課堂的駕馭能力還需要提高。總之,本節(jié)課的教學(xué)任務(wù)已根本完成,但站在更高的角度來思考,反映出我還有些急燥,在課后及聯(lián)系中,應(yīng)該把這種題型至少要細(xì)分為根本圖形的形成、根本圖形的穩(wěn)固、根本圖形的拓展應(yīng)用三個層次,逐步推進(jìn)教學(xué),效果可能會更好。相似三角形的判定教案5一、說教材?相似三角形的判定?是華東師大版九年級上冊中繼學(xué)生學(xué)習(xí)了相似圖形相似圖形的性質(zhì)判定、相似三角形之后的一個學(xué)習(xí)內(nèi)容。它為后面測量和研究三角函數(shù)做了鋪墊,在學(xué)習(xí)-平面幾何中起著承上啟下的作用。因此必須熟練掌握三角形相似的判定,并能靈活運用。教材從三對角、兩對角、一對角對應(yīng)相等的順序展開探究,符合學(xué)生認(rèn)知規(guī)律。二、說學(xué)情:學(xué)生通過前面的學(xué)習(xí)已認(rèn)識了相似圖形的性質(zhì)和判定,認(rèn)識了相似三角形,這為探究三角形相似的判定做好了知識上的準(zhǔn)備。九年級學(xué)生動手操作能力逐漸成熟,能主動參與本節(jié)課的操作、探究,充分體驗獲得知識的快樂。三、說教法與學(xué)法指導(dǎo):本節(jié)課我將采用三學(xué)兩測的模式進(jìn)行教學(xué),即學(xué)案引領(lǐng)自主探索、同伴合作,交流歸納、教師點撥,啟發(fā)引導(dǎo)在生生互動,師生互動中借助多媒體開展教學(xué)。并進(jìn)行根底知識測試綜合能力測試來反應(yīng)課堂效果。在學(xué)法指導(dǎo)上,鼓勵學(xué)生積極參與、觀察、發(fā)現(xiàn),充分引導(dǎo)學(xué)生積極思維,鼓勵學(xué)生進(jìn)行合作學(xué)習(xí),讓每個學(xué)生都動口、動手、動腦,體會數(shù)學(xué)內(nèi)容之間的聯(lián)系,在解決問題的過程中,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性,讓學(xué)生在愉悅的氣氛中感受到數(shù)學(xué)學(xué)習(xí)的無窮樂趣。四、說教學(xué)目標(biāo):知識目標(biāo):(1)探索判定兩個三角形相似的條件,經(jīng)歷利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程。(2)掌握如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似,并應(yīng)用其解決相關(guān)問題。能力目標(biāo):通過觀察、歸納、測量、實驗、推理等手段,讓學(xué)生充分體驗得出結(jié)論的過程,感受發(fā)現(xiàn)的樂趣。讓學(xué)生在觀察中學(xué)會分析,在操作中學(xué)會感知,培養(yǎng)學(xué)生的合情推理能力、有條理的表達(dá)能力。情感目標(biāo):培養(yǎng)學(xué)生的合作交流意識,培養(yǎng)學(xué)生主動探索,敢于實踐,勇于發(fā)現(xiàn)的科學(xué)精神。五、說重點與難點:重點:探究兩個三角形相似的判定方法難點:想方設(shè)法驗證猜測六、說教學(xué)過程的設(shè)計新課程的理想課堂應(yīng)該蘊含以下理論:生活性,開展性,主體性。應(yīng)遵循以下原那么:與學(xué)生生活實際聯(lián)系緊,直觀性強,動手要多,使學(xué)生興趣要高,自信心要強,即用經(jīng)驗動手操作,觀察,思考,釋疑,歸納。所以本節(jié)課,我從學(xué)生的實際經(jīng)驗出發(fā),引導(dǎo)學(xué)生觀察,猜測,想像,驗證,在動手實踐中讓學(xué)生自主地獲取知識,理解知識,應(yīng)用知識。利用多媒體展示學(xué)生的思維過程。利用實物投影展示學(xué)生動手過程,從而突破難點。并用課件設(shè)置了大量的不同梯度,不同類型的習(xí)題,擴大了課堂容量。具體程序如下:(一)復(fù)習(xí)舊知,導(dǎo)入新課1、我們在判定兩個三角形全等時,需要幾個條件2、我們現(xiàn)在判定兩個三角形是否相似需要哪些條件是否存在判定兩個三角形相似的簡便方法呢你認(rèn)為判定兩個三角形相似至少需要幾個條件(設(shè)計意圖:在學(xué)生原有的知識根底上探究,讓學(xué)生有信心。采用類比的方法思考,降低知識難度。鼓勵學(xué)生大膽猜測,為后續(xù)學(xué)習(xí)鋪墊)(二)小組合作,探究新知1、觀察猜測:學(xué)生觀察自己與老師的30與60直角三角尺問1、學(xué)生與老師的三角尺看起來是否相似(設(shè)計意圖:用同學(xué)們身邊熟悉的兩塊同樣角度的三角板的相似讓同學(xué)們觀察,對一個三角形分別與另一個三角形的三個角對應(yīng)相等時,這兩個三角形相似有一個具體的感知,為后面解決一般情況下的兩個任意三角形的相似奠定了直觀認(rèn)識,表達(dá)數(shù)學(xué)中的從特殊到一般的思想滲透。)問2、從直觀來看,這兩個三角形的相似是因為哪些元素的關(guān)系而相似的(三個角對應(yīng)相等)問3、任意兩個三角形的三個角對應(yīng)相等,它們相似嗎(設(shè)計意圖:一個問題串引導(dǎo)學(xué)生思考,猜測,給出探究問題,指明研究方向)2、合作探究:在課前準(zhǔn)備的方格紙上任意畫兩個三角形,使其三對角分別對應(yīng)相等。用刻度尺量一量兩個三角形的對應(yīng)邊,看看兩個三角形的對應(yīng)邊是否成比例,你能得出什么結(jié)論(設(shè)計意圖:在學(xué)生提出猜測后,通過用學(xué)生的實際操作來驗證猜測,獲取直觀結(jié)論后,再用三組邊對應(yīng)成比例,三組角對應(yīng)相等的兩個三角形相似判定所畫的三角形相似)3、交流發(fā)現(xiàn):它們的對應(yīng)邊成比例,這兩個三角形相似。即:如果一個三角形的三個角分別與另一個三角形的三個角對應(yīng)相等,那么這兩個三角形相似。4、小組討論,形成結(jié)論:根據(jù)三角形的內(nèi)角和等于180,我們能不能得到判定兩個三角形相似的簡便方法我們知道如果兩個三角形有兩對角分別對應(yīng)相等,那么第三對角也一定對應(yīng)相等。所以如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。(設(shè)計意圖:學(xué)生以前有過這樣的經(jīng)歷,放手讓學(xué)生嘗試尋找簡便方法,給學(xué)生思考的空間。)5、深入思考,強化理解思考問題:(投影)1、如果兩個三角形僅有一對角對應(yīng)相等的,那么它們是否一定相似2、有一個銳角對應(yīng)相等的兩個直角三角形是否一定相似3、頂角相等的兩個等腰三角形是否一定相似4、有一個角相等的兩個等腰三角形相似。(設(shè)計意圖:思考題的目的是為了讓學(xué)生深入地理解相似三角形的判定方法中兩個三角形必須滿足兩個角對應(yīng)相等的條件,為更好地應(yīng)用做準(zhǔn)備,同時開展學(xué)生的說理能力。)(三)例題精講,標(biāo)準(zhǔn)解答:例1如圖在△ABC中,ACB=90,CDAB于D,請找出圖中的相似三角形,并說明理由。解:△CBD∽△ABC∽△ACD∵BCDB=ACB=90△CBD∽△ABC同理△ABC∽△ACD△CBD∽△ABC∽△ACD例2如圖在△ABC中,DE∥BC,EF∥AB,證明:△ADE∽△EFC。證明:∵DE∥BC,EF∥ABADE=EFC,AED=C,△ADE∽△EFC(如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似)(設(shè)計意圖:在分析兩個例題的過程中教會學(xué)生審題的方法,一方面從條件出發(fā),通過思維的發(fā)散,得出一些結(jié)論;另一方面根據(jù)解決問題的需要明確要尋找的條件,做的有的放矢,提高學(xué)生合情推理的能力。兩道例題的解題過程的書寫是為了加強對推理過程的理解,并能運用自己的方式有條理的表達(dá)推理過程。)(四)根底知識檢測:如圖,□ABCD,過點A的直線交BD、BC、DC的延長線于點E、F、G.(1)與△ABD相似的三角形有____________________;(2)與△AED相似的三角形有____________________;(3)與△AEB相似的三角形有____________________;(4)與△GFC相似的三角形有____________________;(5)圖中共有__________對相似三角形。(設(shè)計意圖:為了進(jìn)一步穩(wěn)固相似三角形的判定方法,并熟悉由平行線構(gòu)造的另一類相似的根本圖形X型。)(五)綜合能力檢測:1、在△ABC與△DEF中,A=70B=42D=70E=68,這兩個三角形相似嗎為什么2、:Rt△ABC中,ACB=90,點E是AC邊所在直線上一點,且EDAB交AB(或AB延長線)于點D。思考:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論