版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山西省太原市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
3.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
4.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面
5.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
6.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
7.
8.
9.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合
10.曲線y=x+(1/x)的凹區(qū)間是
A.(-∞,-1)B.(-1,+∞)C.(-∞,0)D.(0,+∞)
11.
()A.x2
B.2x2
C.xD.2x
12.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
13.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
14.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
15.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
16.下列關(guān)系正確的是()。A.
B.
C.
D.
17.()。A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型
18.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
19.
20.交變應(yīng)力的變化特點(diǎn)可用循環(huán)特征r來(lái)表示,其公式為()。
A.
B.
C.
D.
二、填空題(20題)21.
22.
23.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.
24.設(shè)y=cosx,則y'=______
25.
26.
27.
28.
29.
30.
31.二階常系數(shù)齊次線性方程y"=0的通解為_(kāi)_________。
32.
33.
34.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.
42.
43.
44.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
46.
47.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
48.證明:
49.
50.求曲線在點(diǎn)(1,3)處的切線方程.
51.
52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
55.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
56.
57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
58.
59.求微分方程的通解.
60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
四、解答題(10題)61.計(jì)算
62.求z=x2+y2在條件x+y=1下的條件極值.
63.
64.
65.
66.
67.設(shè)
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.求∫x3。lnxdx。
六、解答題(0題)72.
參考答案
1.B解析:
2.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
3.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
4.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。
5.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
6.A
7.B
8.A
9.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.
兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.
10.D解析:
11.A
12.B
13.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見(jiàn)的錯(cuò)誤是選D.這是由于考生沒(méi)有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
14.D
15.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
16.B由不定積分的性質(zhì)可知,故選B.
17.D
18.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于,可知f'(a)=-1,因此選A.
由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.
19.D
20.A
21.
22.
23.
;
24.-sinx
25.
26.
解析:
27.
本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.
考生只需熟記導(dǎo)數(shù)運(yùn)算的法則
28.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。
29.(-1,1)。
本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間。
所給級(jí)數(shù)為不缺項(xiàng)情形。
(-1,1)。注《綱》中指出,收斂區(qū)間為(-R,R),不包括端點(diǎn)。本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時(shí)過(guò)于緊張而導(dǎo)致的錯(cuò)誤。
30.-sinx
31.y=C1+C2x。
32.
33.
34.1/24
35.
36.1/2
37.
38.
解析:
39.
40.
41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
42.
43.
44.
45.
46.
47.由二重積分物理意義知
48.
49.由一階線性微分方程通解公式有
50.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.
52.由等價(jià)無(wú)窮小量的定義可知
53.
54.
列表:
說(shuō)明
55.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
56.
57.函數(shù)的定義域?yàn)?/p>
注意
58.
則
59.
60.
61.
本題考查的知識(shí)點(diǎn)為不定積分的運(yùn)算.
需指出,由于不是標(biāo)準(zhǔn)公式的形式,可以利用湊微分法求解.
62.構(gòu)造拉格朗日函數(shù)
可解得唯一組解x=1/2,y=1/2.所給問(wèn)題可以解釋為在直線x+y=1上求到原點(diǎn)的距離平方最大或最小的點(diǎn).由于實(shí)際上只能存在距離平方的最小值,不存在最大值,因此(1/2,1/2)為所給問(wèn)題的極小值點(diǎn).極小值為
本題考查的知識(shí)點(diǎn)為二元函數(shù)的條件極值.
通常的求解方法是引入拉格朗日函數(shù),當(dāng)求出可能極值點(diǎn)之后,往往利用所給問(wèn)題的實(shí)際意義或幾何意義判定其是否為極值點(diǎn).
63.
64.
6
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年專業(yè)高級(jí)顧問(wèn)聘任協(xié)議范例版B版
- 2025年江西貨運(yùn)從業(yè)資格試題答案大全
- 建筑工程鋁扣板施工合同
- 智能城市交通網(wǎng)絡(luò)部署合同
- 會(huì)計(jì)師事務(wù)所公關(guān)部聘用合同
- 2025年正規(guī)商品代銷合同書(shū)范文
- 港口物流船運(yùn)租賃合同
- 食品公司品控員招聘合同模板
- 河北省張家口市2024屆高三上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 圖書(shū)館建設(shè)拆遷施工合同
- 橋式起重機(jī)定期檢查記錄表
- 微觀經(jīng)濟(jì)學(xué)(山東聯(lián)盟-山東財(cái)經(jīng)大學(xué))智慧樹(shù)知到期末考試答案2024年
- 數(shù)據(jù)可視化技術(shù)智慧樹(shù)知到期末考試答案2024年
- MOOC 警察禮儀-江蘇警官學(xué)院 中國(guó)大學(xué)慕課答案
- 三基考試題庫(kù)與答案
- 2024年廣東省2024屆高三二模英語(yǔ)試卷(含標(biāo)準(zhǔn)答案)
- 全飛秒激光近視手術(shù)
- 2024年制鞋工專業(yè)知識(shí)考試(重點(diǎn))題庫(kù)(含答案)
- 2023-2024學(xué)年廣州大附屬中學(xué)中考一模物理試題含解析
- 綠化養(yǎng)護(hù)工作日記錄表
- 2024美的在線測(cè)評(píng)題庫(kù)答案
評(píng)論
0/150
提交評(píng)論