




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年內(nèi)蒙古自治區(qū)興安盟普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.A.A.>0B.<0C.=0D.不存在
4.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
5.A.A.
B.
C.-3cotx+C
D.3cotx+C
6.
7.當(dāng)x→0時(shí),x2是x-ln(1+x)的().
A.較高階的無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.較低階的無窮小8.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點(diǎn)ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0
9.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)10.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
11.
12.
有()個(gè)間斷點(diǎn)。
A.1B.2C.3D.413.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-314.若,則()。A.-1B.0C.1D.不存在
15.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().
A.2sin2x
B.-2sin2x
C.sin2x
D.-sin2x
16.函數(shù)y=sinx在區(qū)間[0,n]上滿足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π
17.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
18.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x
B.e-2x
C.-(1/2)e-2x
D.-2e-2x
19.
20.
二、填空題(20題)21.曲線y=x3-6x的拐點(diǎn)坐標(biāo)為______.22.23.
24.
25.設(shè)y=cosx,則y"=________。
26.
27.設(shè)y=1nx,則y'=__________.28.
29.
30.
31.
32.
33.
34.35.36.=______.
37.
38.設(shè)f(x)在x=1處連續(xù),=2,則=________。
39.
40.
三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.
42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.44.求微分方程的通解.45.
46.
47.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
48.49.50.
51.
52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).56.將f(x)=e-2X展開為x的冪級(jí)數(shù).57.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.58.求曲線在點(diǎn)(1,3)處的切線方程.59.證明:
60.
四、解答題(10題)61.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
62.求由曲線y=2-x2,y=2x-1及x≥0圍成的平面圖形的面積S,以及此平面圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.
63.設(shè)函數(shù)y=xsinx,求y'.
64.
65.計(jì)算∫tanxdx.
66.
67.
又可導(dǎo).
68.
69.
70.五、高等數(shù)學(xué)(0題)71.已知
求
.
六、解答題(0題)72.設(shè)
參考答案
1.D
2.B解析:
3.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。
4.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
5.C
6.B
7.C解析:本題考查的知識(shí)點(diǎn)為無窮小階的比較.
由于
可知當(dāng)x→0時(shí),x2與x-ln(1+x)為同階但不等價(jià)無窮?。蕬?yīng)選C.
8.D
9.D極限是否存在與函數(shù)在該點(diǎn)有無定義無關(guān).
10.D本題考查了曲線的漸近線的知識(shí)點(diǎn),
11.B
12.C
∵x=0,1,2,是f(x)的三個(gè)孤立間斷∴有3個(gè)間斷點(diǎn)。
13.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
14.D不存在。
15.B由復(fù)合函數(shù)求導(dǎo)法則,可得
故選B.
16.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可
知y=sinx在[0,π]上滿足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時(shí),cosξ=0,因此選C。
17.D由定積分性質(zhì):若f(x)≤g(x),則
18.D
19.C解析:
20.A解析:21.(0,0)本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點(diǎn)x1,x2,…,xk兩側(cè),y"的符號(hào)是否異號(hào).若在xk的兩側(cè)y"異號(hào),則點(diǎn)(xk,f(xk)為曲線y=f(x)的拐點(diǎn).
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時(shí),y=0.
當(dāng)x<0時(shí),y"<0;當(dāng)x>0時(shí),y">0.因此點(diǎn)(0,0)為曲線y=x3-6x的拐點(diǎn).
本題出現(xiàn)較多的錯(cuò)誤為:填x=0.這個(gè)錯(cuò)誤產(chǎn)生的原因是對(duì)曲線拐點(diǎn)的概念不清楚.拐點(diǎn)的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點(diǎn)稱之為曲線的拐點(diǎn).其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號(hào)之后,再求出f(x0),則拐點(diǎn)為(x0,f(x0)).
注意極值點(diǎn)與拐點(diǎn)的不同之處!
22.
23.
24.3/23/2解析:
25.-cosx
26.
27.28.本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得
29.1/2430.本題考查的知識(shí)點(diǎn)為無窮小的性質(zhì)。
31.
32.x2+y2=Cx2+y2=C解析:
33.234.
35.36.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此
37.038.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。
39.2xy(x+y)+3
40.(1/3)ln3x+C
41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
42.
43.函數(shù)的定義域?yàn)?/p>
注意
44.
45.
則
46.由一階線性微分方程通解公式有
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
48.
49.
50.
51.
52.
53.由等價(jià)無窮小量的定義可知54.由二重積分物理意義知
55.
列表:
說明
56.
57.
58.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
59.
60.
61.
注:本題關(guān)鍵是確定積分區(qū)間,曲線為y2=(x-1)3.由y2≥0知x-1≥0即x≥1,又與直線x=2所圍成的圖形,所以積分區(qū)間為[1,2].62.如圖10-2所示.本題考查的知識(shí)點(diǎn)為利用定積分求平面圖形的面積;利用定積分求旋轉(zhuǎn)體體積.
需注意的是所給平面圖形一部分位于x軸上方,而另一部分位于x軸下方.而位于x軸下方的圖形繞x軸旋轉(zhuǎn)一周所成的旋轉(zhuǎn)體包含于x軸上方的圖形繞x軸旋轉(zhuǎn)一周所成的旋轉(zhuǎn)體之中,因此只需求出x軸上方圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積,即為所求旋轉(zhuǎn)體體積.
63.由于y=xsinx可得y'=x'sinx+x·(sinx)'=sinx+xcosx.由于y=xsinx,可得y'=x'sinx+x·(sinx)'=sinx+xcosx.
64.
65.
;本題考查的知識(shí)點(diǎn)為定積分的換元積分法.
66.
67.解
68
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 動(dòng)漫產(chǎn)業(yè)政策分析-全面剖析
- 廣西北流市清灣鎮(zhèn)中心衛(wèi)生院招聘真題2024
- 2025年帆船教練職業(yè)能力考核試卷:帆船運(yùn)動(dòng)教學(xué)課程評(píng)估與改進(jìn)
- 2025年注冊會(huì)計(jì)師考試《會(huì)計(jì)》易錯(cuò)陷阱歸類分析與模擬試題集
- 2025年鄉(xiāng)村醫(yī)生考試題庫:農(nóng)村急救技能操作模擬試題與解析
- 2025年中學(xué)教師資格考試《綜合素質(zhì)》教育理念論述題解析試題集
- 核能發(fā)電效率提升-第4篇-全面剖析
- 2025-2030全球及中國汽車轉(zhuǎn)向系統(tǒng)齒輪行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報(bào)告
- 2025-2030全球及中國模擬多路復(fù)用器和解多路復(fù)用器行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報(bào)告
- 2025年安全評(píng)價(jià)師職業(yè)資格考試模擬試題(安全生產(chǎn)法規(guī)體系)
- 19S406建筑排水管道安裝-塑料管道
- KA-T 20.1-2024 非煤礦山建設(shè)項(xiàng)目安全設(shè)施設(shè)計(jì)編寫提綱 第1部分:金屬非金屬地下礦山建設(shè)項(xiàng)目安全設(shè)施設(shè)計(jì)編寫提綱
- 綠色生活實(shí)踐
- (2024年)硫化氫安全培訓(xùn)課件
- 《聚焦超聲治療》課件
- 2023-2024學(xué)年高一下學(xué)期第一次月考(湘教版2019)地理試題(解析版)
- 婦科炎癥介紹演示培訓(xùn)課件
- 如康家園管理制度
- 蓄水池工程施工工藝與技術(shù)措施
- 2022年4月自考00149國際貿(mào)易理論與實(shí)務(wù)試題及答案含評(píng)分標(biāo)準(zhǔn)
- 大數(shù)據(jù)驅(qū)動(dòng)的藥物研發(fā)
評(píng)論
0/150
提交評(píng)論