2022年河南省漯河市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第1頁
2022年河南省漯河市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第2頁
2022年河南省漯河市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第3頁
2022年河南省漯河市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第4頁
2022年河南省漯河市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年河南省漯河市成考專升本高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.

2.A.-1

B.0

C.

D.1

3.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.14.()。A.e-6

B.e-2

C.e3

D.e6

5.

6.

7.由曲線y=1/X,直線y=x,x=2所圍面積為

A.A.

B.B.

C.C.

D.D.

8.微分方程y"-y'=0的通解為()。A.

B.

C.

D.

9.A.3x2+C

B.

C.x3+C

D.

10.設(shè)y=sin2x,則y'=A.A.2cosxB.cos2xC.2cos2xD.cosx11.下列命題正確的是()A.A.

B.

C.

D.

12.

13.A.e

B.

C.

D.

14.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=A.-1/x

B.1/x

C.-1/x2

D.1/x2

15.A.A.-3/2B.3/2C.-2/3D.2/316.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

17.A.x2+C

B.x2-x+C

C.2x2+x+C

D.2x2+C

18.下列等式中正確的是()。A.

B.

C.

D.

19.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0

B.

C.

D.π

20.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

21.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0

B.f(xo)必定存在,但f(xo)不一定等于零

C.f(xo)可能不存在

D.f(xo)必定不存在

22.

23.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.

24.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

25.

26.

27.設(shè)函數(shù)f(x)在點(diǎn)x0。處連續(xù),則下列結(jié)論正確的是().A.A.

B.

C.

D.

28.A.A.

B.

C.

D.不能確定

29.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-230.A.A.

B.e

C.e2

D.1

31.

32.

33.A.

B.0

C.ln2

D.-ln2

34.

35.

36.A.

B.x2

C.2x

D.

37.單位長度扭轉(zhuǎn)角θ與下列哪項(xiàng)無關(guān)()。

A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)38.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π

39.曲線的水平漸近線的方程是()

A.y=2B.y=-2C.y=1D.y=-140.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

41.

42.

43.A.A.4B.3C.2D.1

44.

45.設(shè)Y=e-5x,則dy=().

A.-5e-5xdx

B.-e-5xdx

C.e-5xdx

D.5e-5xdx

46.()A.A.1/2B.1C.2D.e

47.

48.

49.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,450.

設(shè)f(x)=1+x,則f(x)等于()。A.1

B.

C.

D.

二、填空題(20題)51.設(shè)y=ex/x,則dy=________。

52.

53.54.

55.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。

56.

57.58.

59.微分方程y'=2的通解為__________。

60.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.

61.

62.設(shè)y=1nx,則y'=__________.63.曲線y=x3-6x的拐點(diǎn)坐標(biāo)為______.

64.

65.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為______.

66.

67.68.級數(shù)的收斂半徑為______.

69.

70.三、計(jì)算題(20題)71.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.72.求曲線在點(diǎn)(1,3)處的切線方程.73.將f(x)=e-2X展開為x的冪級數(shù).

74.

75.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

76.

77.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.78.證明:79.

80.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

81.

82.

83.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).84.

85.求微分方程y"-4y'+4y=e-2x的通解.

86.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.87.

88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.89.求微分方程的通解.90.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則四、解答題(10題)91.(本題滿分10分)求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)-周所成旋轉(zhuǎn)體的體積.

92.求曲線y=2-x2和直線y=2x+2所圍成圖形面積.

93.

94.證明:在區(qū)間(0,1)內(nèi)有唯一實(shí)根.

95.

96.

97.

98.

99.100.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.五、高等數(shù)學(xué)(0題)101.設(shè)某產(chǎn)品需求函數(shù)為

求p=6時的需求彈性,若價格上漲1%,總收入增加還是減少?

六、解答題(0題)102.

參考答案

1.B

2.C

3.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

4.A

5.B

6.A

7.B本題考查了曲線所圍成的面積的知識點(diǎn),

曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,

8.B本題考查的知識點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。

9.B

10.C由鏈?zhǔn)椒▌t可得(sin2x)'=cos2x*(2x)'=2cos2x,故選C。

11.D

12.C

13.C

14.C

15.A

16.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

17.B本題考查的知識點(diǎn)為不定積分運(yùn)算.

因此選B.

18.B

19.C本題考查的知識點(diǎn)為羅爾定理的條件與結(jié)論。

20.C

21.C

22.B解析:

23.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f'(x)=2(sinx)'=2cosx,

可知應(yīng)選B.

24.A

25.B解析:

26.B

27.D本題考查的知識點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.

28.B

29.A由于

可知應(yīng)選A.

30.C本題考查的知識點(diǎn)為重要極限公式.

31.C解析:

32.C

33.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此

故選A.

34.B

35.D解析:

36.C

37.A

38.C本題考查的知識點(diǎn)為羅爾定理的條件與結(jié)論.

由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.

故知應(yīng)選C.

39.D

40.B如果y1,y2這兩個特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

41.B

42.D解析:

43.C

44.B

45.A

【評析】基本初等函數(shù)的求導(dǎo)公式與導(dǎo)數(shù)的四則運(yùn)算法則是常見的試題,一定要熟記基本初等函數(shù)求導(dǎo)公式.對簡單的復(fù)合函數(shù)的求導(dǎo),應(yīng)該注意由外到里,每次求一個層次的導(dǎo)數(shù),不要丟掉任何一個復(fù)合層次.

46.C

47.D

48.B

49.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.

50.C本題考查的知識點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。

51.

52.253.

本題考查的知識點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.

54.1

55.-1

56.+∞(發(fā)散)+∞(發(fā)散)

57.

58.

59.y=2x+C

60.

61.3x2+4y

62.63.(0,0)本題考查的知識點(diǎn)為求曲線的拐點(diǎn).

依求曲線拐點(diǎn)的一般步驟,只需

(1)先求出y".

(2)令y"=0得出x1,…,xk.

(3)判定在點(diǎn)x1,x2,…,xk兩側(cè),y"的符號是否異號.若在xk的兩側(cè)y"異號,則點(diǎn)(xk,f(xk)為曲線y=f(x)的拐點(diǎn).

y=x3-6x,

y'=3x2-6,y"=6x.

令y"=0,得到x=0.當(dāng)x=0時,y=0.

當(dāng)x<0時,y"<0;當(dāng)x>0時,y">0.因此點(diǎn)(0,0)為曲線y=x3-6x的拐點(diǎn).

本題出現(xiàn)較多的錯誤為:填x=0.這個錯誤產(chǎn)生的原因是對曲線拐點(diǎn)的概念不清楚.拐點(diǎn)的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點(diǎn)稱之為曲線的拐點(diǎn).其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號之后,再求出f(x0),則拐點(diǎn)為(x0,f(x0)).

注意極值點(diǎn)與拐點(diǎn)的不同之處!

64.ln|x-1|+c

65.本題考查的知識點(diǎn)為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).由直線的點(diǎn)向式方程可知所求直線方程為

66.f(x)+Cf(x)+C解析:67.3x2

68.本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.

所給級數(shù)為缺項(xiàng)情形,由于

69.

70.(-21)(-2,1)

71.

72.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

73.

74.

75.

76.

77.

78.

79.

80.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

81.

82.

83.

列表:

說明

84.

85.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

86.由二重積分物理意義知

87.由一階線性微分方程通解公式有

88.函數(shù)的定義域?yàn)?/p>

注意

89.90.由等價無窮小量的定義可知

91.本題考查的知識點(diǎn)有兩個:利用定積分求平面圖形的面積;用定積分求繞坐標(biāo)軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.

所給曲線圍成的平面圖形如圖1-2所示.

解法1利用定積分求平面圖形的面積。

解法2利用二重積分求平面圖形面積.

求旋轉(zhuǎn)體體積與解法1同.

注本題也可以利用二重積分求平面圖形的面積.

92.解

93.

94.本題考查的知識點(diǎn)為閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理;利用導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性.

證明方程f(x)=0在區(qū)間(a,b)內(nèi)有唯一實(shí)根,往往分兩步考慮

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論