版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年黑龍江省牡丹江市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.若x→x0時(shí),α(x)、β(x)都是無(wú)窮小(β(x)≠0),則x→x0時(shí),α(x)/β(x)A.A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型
2.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
3.。A.2B.1C.-1/2D.0
4.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx
5.
6.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
7.
8.()A.A.
B.
C.
D.
9.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
10.
11.A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.無(wú)法判定斂散性12.設(shè)()A.1B.-1C.0D.2
13.
14.A.0B.1C.2D.任意值
15.
16.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面17.A.2xy+3+2yB.xy+3+2yC.2xy+3D.xy+318.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.
B.
C.
D.
19.
20.當(dāng)x→0時(shí),2x+x2是x的A.A.等價(jià)無(wú)窮小B.較低階無(wú)窮小C.較高階無(wú)窮小D.同階但不等價(jià)的無(wú)窮小21.A.A.
B.B.
C.C.
D.D.
22.
23.設(shè)f'(x)在點(diǎn)x0的某鄰域內(nèi)存在,且f(x0)為f(x)的極大值,則等于().A.A.2B.1C.0D.-224.
25.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定26.設(shè)曲線y=x-ex在點(diǎn)(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-127.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
28.
29.
A.x=-2B.x=2C.y=1D.y=-2
30.為了提高混凝土的抗拉強(qiáng)度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。
A.
B.
C.
D.
31.點(diǎn)(-1,-2,-5)關(guān)于yOz平面的對(duì)稱點(diǎn)是()
A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)32.等于()。A.-1B.-1/2C.1/2D.133.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
34.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
35.
36.
37.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.238.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
39.
40.
41.A.3B.2C.1D.0
42.
43.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
44.
45.A.A.Ax
B.
C.
D.
46.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
47.
48.
49.
50.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()
A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較二、填空題(20題)51.
52.
53.
54.
55.
56.曲線y=2x2-x+1在點(diǎn)(1,2)處的切線方程為_(kāi)_________。
57.設(shè)函數(shù)y=x2+sinx,則dy______.
58.
59.
60.
61.微分方程y'-2y=3的通解為_(kāi)_________。
62.
63.設(shè)y=cosx,則y'=______
64.
65.
66.67.68.y=ln(1+x2)的單調(diào)增加區(qū)間為_(kāi)_____.
69.
70.
三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.72.73.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).74.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.75.求微分方程的通解.
76.
77.
78.
79.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
80.81.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).82.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
83.求微分方程y"-4y'+4y=e-2x的通解.
84.
85.
86.求曲線在點(diǎn)(1,3)處的切線方程.87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.88.證明:89.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)91.將函數(shù)f(x)=lnx展開(kāi)成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。
92.(本題滿分10分)將f(x)=ln(1+x2)展開(kāi)為x的冪級(jí)數(shù).
93.
94.(本題滿分10分)設(shè)F(x)為f(x)的-個(gè)原函數(shù),且f(x)=xlnx,求F(x).
95.
96.
97.
98.
99.
100.計(jì)算五、高等數(shù)學(xué)(0題)101.F(x)是f(x)的一個(gè)原函數(shù),c為正數(shù),則∫f(x)dx=()。
A.
B.F(x)+c
C.F(x)+sinc
D.F(x)+lnc
六、解答題(0題)102.
參考答案
1.D
2.D解析:
3.A
4.A
5.A
6.A
7.A解析:
8.A
9.B
10.B
11.C
12.A
13.B
14.B
15.C
16.A
17.C本題考查了一階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
18.D
19.C
20.D
21.C本題考查了二重積分的積分區(qū)域的表示的知識(shí)點(diǎn).
22.D解析:
23.C本題考查的知識(shí)點(diǎn)為極值的必要條件;在一點(diǎn)導(dǎo)數(shù)的定義.
由于f(x0)為f(x)的極大值,且f'(x0)存在,由極值的必要條件可知f'(x0)=0.從而
可知應(yīng)選C.
24.D
25.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。
26.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(diǎn)(0,-1)處切線斜率為0,因此選C.
27.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
28.A
29.C解析:
30.D
31.D關(guān)于yOz平面對(duì)稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),故選D。
32.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。
故應(yīng)選C。
33.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
34.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。
35.D
36.B解析:
37.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
38.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
39.C
40.D
41.A
42.A
43.B
44.C解析:
45.D
46.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
47.B解析:
48.C
49.A
50.A由f"(x)>0說(shuō)明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。
51.
52.
53.
本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
54.(01]
55.
56.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)57.(2x+cosx)dx;本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,
可知dy=(2x+cosx)dx.
解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.
58.3
59.
60.
61.y=Ce2x-3/2
62.
63.-sinx
64.
65.
解析:66.e-1/2
67.68.(0,+∞)本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域?yàn)?-∞,+∞).
又由于,令y'=0得唯一駐點(diǎn)x=0.
當(dāng)x>0時(shí),總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
69.
70.
71.
72.
73.
列表:
說(shuō)明
74.
75.
76.77.由一階線性微分方程通解公式有
78.
79.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
80.
81.82.函數(shù)的定義域?yàn)?/p>
注意
83.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
84.
85.
則
86.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 抽煙檢討書600字范文(3篇)
- 幼兒園畢業(yè)主題主持稿怎么寫(8篇)
- 財(cái)務(wù)部做好標(biāo)準(zhǔn)化工作總結(jié)匯報(bào)5篇
- 沙發(fā)銷售合同文檔模板
- 行政前臺(tái)述職報(bào)告7篇
- 古建筑彩繪修復(fù)改造合同
- 國(guó)土資源安全員招聘協(xié)議
- 電力工程招投標(biāo)案例新技巧
- 文化場(chǎng)館招投標(biāo)法律制度詳解
- 電力設(shè)施防水堵漏協(xié)議
- 保安部崗位設(shè)置圖
- DB31T 1295-2021 立體花壇技術(shù)規(guī)程
- 部編版《道德與法治》五年級(jí)上冊(cè)第10課《傳統(tǒng)美德 源遠(yuǎn)流長(zhǎng)》優(yōu)質(zhì)課件
- 原發(fā)性骨髓纖維化課件
- 消防工程施工驗(yàn)收單樣板
- 中央空調(diào)人員培訓(xùn)內(nèi)容表
- 發(fā)現(xiàn)生活中的美-完整版PPT
- 小學(xué)道德與法治人教三年級(jí)上冊(cè)第三單元安全護(hù)我成長(zhǎng)-《遭遇陌生人》教案
- CAMDS操作方法及使用技巧
- 平狄克《微觀經(jīng)濟(jì)學(xué)》(第8版)筆記和課后習(xí)題詳解
- 最優(yōu)化理論與算法課程教學(xué)大綱
評(píng)論
0/150
提交評(píng)論