版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年內(nèi)蒙古自治區(qū)烏海市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
2.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
3.A.2B.2xC.2yD.2x+2y
4.下列各式中正確的是()。
A.
B.
C.
D.
5.
A.
B.
C.
D.
6.A.1B.0C.2D.1/2
7.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
8.若,則下列命題中正確的有()。A.
B.
C.
D.
9.A.A.4/3B.1C.2/3D.1/3
10.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
11.
12.
13.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件
14.
15.
16.設(shè)函數(shù)f(x)=(x-1)(x-2)(x-3),則方程f(x)=0有()。A.一個(gè)實(shí)根B.兩個(gè)實(shí)根C.三個(gè)實(shí)根D.無(wú)實(shí)根
17.
A.2B.1C.1/2D.0
18.
19.
20.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
二、填空題(20題)21.
22.
23.
24.
25.y″+5y′=0的特征方程為——.
26.
27.
28.
29.
30.函數(shù)f(x)=xe-x的極大值點(diǎn)x=__________。
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.
42.證明:
43.
44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
46.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
47.
48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
50.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
51.將f(x)=e-2X展開為x的冪級(jí)數(shù).
52.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.求微分方程的通解.
54.
55.
56.
57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
58.求微分方程y"-4y'+4y=e-2x的通解.
59.
60.
四、解答題(10題)61.
62.
63.
64.
65.
66.求微分方程y"+9y=0的通解。
67.設(shè)區(qū)域D為:
68.求曲線y=x3+2過(guò)點(diǎn)(0,2)的切線方程,并求該切線與曲線及直線x=1所圍成的平面圖形D的面積S。
69.
70.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
五、高等數(shù)學(xué)(0題)71.求
的收斂半徑和收斂區(qū)間。
六、解答題(0題)72.
參考答案
1.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
2.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
3.A
4.B
5.B
6.C
7.B?
8.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
9.C
10.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
11.A
12.B
13.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
14.D解析:
15.B
16.B
17.D本題考查的知識(shí)點(diǎn)為重要極限公式與無(wú)窮小量的性質(zhì).
18.A
19.D
20.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
21.
22.1/6
23.1
24.2.
本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
25.由特征方程的定義可知,所給方程的特征方程為
26.
27.1本題考查了冪級(jí)數(shù)的收斂半徑的知識(shí)點(diǎn)。
28.-ln|3-x|+C
29.1/4
30.1
31.
本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.
32.1/2
33.-2sin2-2sin2解析:
34.2本題考查了定積分的知識(shí)點(diǎn)。
35.
36.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)
37.tanθ-cotθ+C
38.
本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
39.
40.3/2
41.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.
43.
44.由二重積分物理意義知
45.函數(shù)的定義域?yàn)?/p>
注意
46.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
47.
48.
列表:
說(shuō)明
49.
50.
51.
52.
53.
54.
則
55.由一階線性微分方程通解公式有
56.
57.由等價(jià)無(wú)窮小量的定義可知
58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
59.
60.
61.
62.
63.
64.
65.
66.y"+9y=0的特征方程為r2+9=0特征值為r12=±3i故通解為y=C1cos3x+C2sin3x。y"+9y=0的特征方程為r2+9=0,特征值為r1,2=±3i,故通解為y=C1cos3x+C2sin3x。
67.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).
如果積分區(qū)域?yàn)閳A域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.
使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
本題考生中常見的錯(cuò)誤為:
被
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)冰箱行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)美容培訓(xùn)行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 建設(shè)施工過(guò)程職業(yè)病危害防治總結(jié)報(bào)告
- 肇慶市中小學(xué)教學(xué)質(zhì)量評(píng)估2012屆高中畢業(yè)班第二次模擬試題數(shù)學(xué)(理)
- 浙江中乾計(jì)量校準(zhǔn)有限公司介紹企業(yè)發(fā)展分析報(bào)告
- 軟件評(píng)估報(bào)告范例怎么寫
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)集錦
- 年產(chǎn)毛竹纖維粉生物基可降解材料項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 年產(chǎn)15萬(wàn)噸(折百)稀硝酸及10萬(wàn)噸濃硝酸項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 二零二五年度技術(shù)服務(wù)合同標(biāo)的和技術(shù)要求
- 2024年黑龍江省《輔警招聘考試必刷500題》考試題庫(kù)附答案(滿分必刷)
- 2025年初級(jí)會(huì)計(jì)職稱《經(jīng)濟(jì)法基礎(chǔ)》全真模擬及答案(解析3套)
- 期末復(fù)習(xí)試題(試題)-2024-2025學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)蘇教版
- 河北省石家莊市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 國(guó)家八年級(jí)數(shù)學(xué)質(zhì)量測(cè)試題(六套)
- 人教版小學(xué)1-6年級(jí)日積月累(全)
- 盤扣式腳手架(內(nèi)部培訓(xùn))(課堂PPT)
- 袖閥管注漿工法
- 設(shè)計(jì)說(shuō)明書——曲柄連桿機(jī)構(gòu)
- 3勞務(wù)分包商動(dòng)態(tài)評(píng)價(jià)管理制度
- 市場(chǎng)發(fā)展部崗位職責(zé)
評(píng)論
0/150
提交評(píng)論