2023年寧夏回族自治區(qū)銀川市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2023年寧夏回族自治區(qū)銀川市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2023年寧夏回族自治區(qū)銀川市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2023年寧夏回族自治區(qū)銀川市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2023年寧夏回族自治區(qū)銀川市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年寧夏回族自治區(qū)銀川市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點且平行于x軸B.不過原點但平行于x軸C.過原點且垂直于x軸D.不過原點但垂直于x軸

2.設(shè)y=exsinx,則y'''=A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

3.

4.

5.A.0B.1C.2D.-1

6.

7.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx

8.

9.方程x2+2y2+3z2=1表示的二次曲面是

A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面

10.等于().A.A.0

B.

C.

D.∞

11.

12.A.x2+C

B.x2-x+C

C.2x2+x+C

D.2x2+C

13.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)可導(dǎo),f'(x)>0,f(a)f(b)<0,則f(x)在(a,b)內(nèi)零點的個數(shù)為

A.3B.2C.1D.0

14.

15.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos116.設(shè)y=e-3x,則dy=A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

17.擺動導(dǎo)桿機構(gòu)如圖所示,已知φ=ωt(ω為常數(shù)),O點到滑竿CD間的距離為l,則關(guān)于滑竿上銷釘A的運動參數(shù)計算有誤的是()。

A.運動方程為x=ltan∮=ltanωt

B.速度方程為

C.加速度方程

D.加速度方程

18.

19.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件20.級數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散二、填空題(20題)21.設(shè)z=ln(x2+y),則dz=______.

22.

23.

24.

25.

26.級數(shù)的收斂區(qū)間為______.27.________。

28.

29.設(shè)y=ln(x+2),貝y"=________。

30.31.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標系下的二重積分的表達式為________。32.

33.

34.35.

36.

37.

38.極限=________。

39.

40.交換二重積分次序=______.三、計算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.

42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.44.將f(x)=e-2X展開為x的冪級數(shù).45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.證明:47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.48.當x一0時f(x)與sin2x是等價無窮小量,則

49.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?

50.求曲線在點(1,3)處的切線方程.51.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

52.求微分方程的通解.53.54.55.

56.

57.58.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.59.

60.

四、解答題(10題)61.

62.

63.64.求fe-2xdx。

65.

66.

67.

68.設(shè)z=ysup>2</sup>esup>3x</sup>,求dz。

69.70.五、高等數(shù)學(xué)(0題)71.=()。A.

B.

C.

D.

六、解答題(0題)72.(本題滿分10分)求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.

參考答案

1.C將原點(0,0,0)代入直線方程成等式,可知直線過原點(或由直線方程x/m=y/n=z/p表示過原點的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且

(0,2,1)*(1,0,0)=0,

可知所給直線與x軸垂直,因此選C。

2.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

3.C

4.C解析:

5.C

6.D解析:

7.Cy=cosx,y'=-sinx,y''=-cosx.

8.C

9.D本題考查了二次曲面的知識點。

10.A

11.C

12.B本題考查的知識點為不定積分運算.

因此選B.

13.C本題考查了零點存在定理的知識點。由零點存在定理可知,f(x)在(a,b)上必有零點,且函數(shù)是單調(diào)函數(shù),故其在(a,b)上只有一個零點。

14.A

15.B本題考查的知識點為可變上限的積分.

由于,從而知

可知應(yīng)選B.

16.C

17.C

18.D解析:

19.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過來卻不行,如函數(shù)f(x)=故選A。

20.A

21.本題考查的知識點為求二元函數(shù)的全微分.

通常求二元函數(shù)的全微分的思路為:

先求出如果兩個偏導(dǎo)數(shù)為連續(xù)函數(shù),則可得知

由題設(shè)z=ln(x2+y),令u=x2+y,可得

當X2+y≠0時,為連續(xù)函數(shù),因此有

22.

23.

24.1

25.x=-326.(-1,1)本題考查的知識點為求冪級數(shù)的收斂區(qū)間.

所給級數(shù)為不缺項情形.

可知收斂半徑,因此收斂區(qū)間為

(-1,1).

注:《綱》中指出,收斂區(qū)間為(-R,R),不包括端點.

本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時過于緊張而導(dǎo)致的錯誤.27.1

28.-ln|3-x|+C

29.

30.

31.因為D:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。32.本題考查的知識點為極限運算.

33.-5-5解析:

34.

本題考查的知識點為二重積分的計算.

35.1本題考查了一階導(dǎo)數(shù)的知識點。

36.

37.55解析:38.因為所求極限中的x的變化趨勢是趨近于無窮,因此它不是重要極限的形式,由于=0,即當x→∞時,為無窮小量,而cosx-1為有界函數(shù),利用無窮小量性質(zhì)知

39.ee解析:

40.本題考查的知識點為交換二重積分次序.

積分區(qū)域D:0≤x≤1,x2≤y≤x

積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此

41.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

42.由二重積分物理意義知

43.

列表:

說明

44.45.函數(shù)的定義域為

注意

46.

47.

48.由等價無窮小量的定義可知

49.需求規(guī)律為Q=100ep-2.25p

∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當P=10時,價格上漲1%需求量減少2.5%50.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

51.

52.

53.

54.

55.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論