版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年安徽省淮南市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
2.
3.()A.A.
B.
C.
D.
4.
5.
A.必定存在且值為0B.必定存在且值可能為0C.必定存在且值一定不為0D.可能不存在6.下列關(guān)系正確的是()。A.
B.
C.
D.
7.下列關(guān)系式正確的是().A.A.
B.
C.
D.
8.
9.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.
B.5f(x)
C.f(5x)
D.5f(5x)
10.
11.
12.
13.A.e2
B.e-2
C.1D.0
14.
15.A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.無(wú)法判定斂散性16.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
17.
18.
19.
20.
21.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().
A.-3/4B.0C.3/4D.122.
23.在空間直角坐標(biāo)系中方程y2=x表示的是
A.拋物線B.柱面C.橢球面D.平面24.直線l與x軸平行,且與曲線y=x-ex相切,則切點(diǎn)的坐標(biāo)是()A.A.(1,1)
B.(-1,1)
C.(0,-l)
D.(0,1)
25.()。A.
B.
C.
D.
26.
27.A.2B.-2C.-1D.1
28.A.-1
B.0
C.
D.1
29.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
30.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
31.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
32.A.e
B.e-1
C.-e-1
D.-e
33.
34.
35.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
36.
37.
38.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
39.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
40.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
41.A.3B.2C.1D.1/2
42.
43.二次積分等于()A.A.
B.
C.
D.
44.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-345.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
46.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類的。
A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位
B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景
C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位
D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力
47.
48.
49.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面
50.
二、填空題(20題)51.52.53.
54.過(guò)點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為__________。
55.
56.57.58.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
59.
60.
61.62.
63.
64.
65.
66.
67.68.過(guò)點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.
69.設(shè)f'(1)=2.則
70.∫(x2-1)dx=________。三、計(jì)算題(20題)71.
72.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.73.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
74.
75.
76.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
77.
78.
79.80.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.81.將f(x)=e-2X展開為x的冪級(jí)數(shù).
82.求微分方程y"-4y'+4y=e-2x的通解.
83.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.84.85.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).86.求曲線在點(diǎn)(1,3)處的切線方程.87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.88.證明:89.求微分方程的通解.90.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則四、解答題(10題)91.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.
92.設(shè)z=x2+y/x,求dz。
93.求∫xcosx2dx。
94.
95.
96.
97.
98.
99.
100.求由曲線xy=1及直線y=x,y=2所圍圖形的面積A。五、高等數(shù)學(xué)(0題)101.求
的收斂半徑和收斂區(qū)間。
六、解答題(0題)102.
參考答案
1.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
2.C
3.A
4.A
5.B
6.B由不定積分的性質(zhì)可知,故選B.
7.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.
8.A
9.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).
(∫f5x)dx)'為將f(5x)先對(duì)x積分,后對(duì)x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對(duì)x積分,后對(duì)x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).
可知應(yīng)選C.
10.C
11.B解析:
12.D解析:
13.A
14.D
15.C
16.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
17.A
18.D
19.B
20.B解析:
21.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使
可知應(yīng)選D.
22.D
23.B解析:空間中曲線方程應(yīng)為方程組,故A不正確;三元一次方程表示空間平面,故D不正確;空間中,缺少一維坐標(biāo)的方程均表示柱面,可知應(yīng)選B。
24.C
25.C
26.A解析:
27.A
28.C
29.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
30.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).
可知應(yīng)選C.
31.D解析:
32.B所給極限為重要極限公式形式.可知.故選B.
33.D
34.A
35.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。
36.A
37.C
38.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見的錯(cuò)誤是選C.如果畫個(gè)草圖,則可以避免這類錯(cuò)誤.
39.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
40.C
41.B,可知應(yīng)選B。
42.A
43.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
44.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
45.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
46.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類。
47.A
48.C解析:
49.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
50.C51.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
f'(x)=(x2)'=2x,
f"(x)=(2x)'=2.
52.本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.
考生只需熟記導(dǎo)數(shù)運(yùn)算的法則
53.
54.
55.
解析:56.0
本題考查的知識(shí)點(diǎn)為無(wú)窮小量的性質(zhì).
57.58.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此
59.
60.1/x
61.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
若利用極限公式
如果利用無(wú)窮大量與無(wú)窮小量關(guān)系,直接推導(dǎo),可得
62.
本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
63.
64.
解析:
65.x=-3
66.(1+x)ex(1+x)ex
解析:67.168.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過(guò)點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為
69.11解析:本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f'(1)=2,可知
70.
71.
72.
73.
74.
75.
76.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
77.
則
78.由一階線性微分方程通解公式有
79.
80.
81.
82.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
83.函數(shù)的定義域?yàn)?/p>
注意
84.
85.
列表:
說(shuō)明
86.曲線
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)安系統(tǒng)相關(guān)行業(yè)投資方案范本
- 光學(xué)纖維面板系列行業(yè)相關(guān)投資計(jì)劃提議范本
- 鈾及其轉(zhuǎn)化物行業(yè)相關(guān)投資計(jì)劃提議
- racemic-trans-Lamivudine-生命科學(xué)試劑-MCE
- R-29676-生命科學(xué)試劑-MCE
- 聯(lián)誼晚會(huì)活動(dòng)主持稿結(jié)尾(34篇)
- 閉口式裝修服務(wù)協(xié)議2024年示范文本
- 小學(xué)音樂(lè)教研工作計(jì)劃
- 美術(shù)教學(xué)心得體會(huì)15篇
- 二手房居間服務(wù)2024買賣協(xié)議
- 2024-2030年醫(yī)療美容產(chǎn)品行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 中小學(xué)-消防安全知識(shí)教育-課件
- 九年級(jí)中考英語(yǔ)數(shù)詞課件
- 幼兒園集中用餐食品安全崗位責(zé)任制度
- 食品生產(chǎn)企業(yè)食品安全管理人員考試題庫(kù)含答案完整版
- 一份完整的投標(biāo)書
- 宜章莽山景區(qū)旅游開發(fā)有限公司股東全部權(quán)益價(jià)值評(píng)估項(xiàng)目資產(chǎn)評(píng)估報(bào)告
- 化學(xué)丨四川省南充市高2025屆高考適應(yīng)性考試(南充一診)高三10月聯(lián)考化學(xué)試卷及答案
- 蒲城清潔能源化工有限責(zé)任公司70萬(wàn)噸年煤制烯烴項(xiàng)目脫鹽水
- GB/T 44340-2024糧食儲(chǔ)藏玉米安全儲(chǔ)藏技術(shù)規(guī)范
- 點(diǎn)亮文明 課件 2024-2025學(xué)年蘇少版(2024)初中美術(shù)七年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論