版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
蘇科版江蘇省南京市2018-2019學(xué)年度七年級數(shù)學(xué)下冊期中押題卷難題培優(yōu)TOC\o"1-5"\h\z.2-1等于( )A.2 B./C.-2D..下列運算正確的是( )A.a+a=a2 B. a2?a3=a6 C. ( —2a2) 2=4a4 D. (a—2) 2=a2-4.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果/1=15°,那么/2的度數(shù)是( )A.15°B.25C.300D.35°.803-80能被( )整除.A.76B.78C.79D.82.如圖所示,分別以n邊形的頂點為圓心,以1cm為半徑畫圓,則圖中陰影部分的面積之和為( )A.兀crm B.2ttcrmiC,4兀cmD.nttcrmi.二元一次方程2x+5y=32的正整數(shù)解有( )組.A.3B.4 C.5D.67.下列多項式中能用平方差公式分解的有( )①一a2-b2;②9x2—4y2;③x2—4y2;④(—m)2—(—n)2;1⑤—144a2+121b2;⑥—2m2+2n2.A.1個B.2個C.3個D.5個.一個正多邊形的每一個外角都等于 30°,則這個多邊形的邊數(shù)是( )A.6B.8 C.9D.12.下列計算的結(jié)果為 x6的是( )A.xx5 B.x8-x2 C.x12-2 D,(x3)3
.在平面直角坐標(biāo)系中,將點 (一2,—3)向上平移3個單位長度,則平移后的點的坐標(biāo)為()A.(-2,0) B.(―2,1)C.(0,-2)D.(1,—1).已知坐標(biāo)平面內(nèi)一動點 P(1,2),先沿x軸的正方向平移 3個單位,再沿y軸的負(fù)半軸方向平移3個單位后停止,此時P的坐標(biāo)是..如圖,把一個長方形紙片沿 EF折疊后,點D,C分別落在C的位置,若= 貝U士AE3等于14.若3x=4,9y=7,則3x2y的值為.現(xiàn)有若干張卡片,分別是正方形卡片A、B的位置,若= 貝U士AE3等于14.若3x=4,9y=7,則3x2y的值為.若m—n=3,mn=—2,則m2+n2=.如圖①:MA1//NA2,圖②:MA1//NA3,圖③:MA1//NA4,圖④:MA1//NA5,…,則第n個圖中的/A1+/A2+ZA3+-+ZAn+1=。(用含n的代數(shù)式表小).18.分解因式:2x2—18=.11 1119.計算:(3x2y—xy2+2xy)+(—2xy)=20.用n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n>4)?(探究)為了解決上面的數(shù)學(xué)問題,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè) n邊形的分割方案有Pn種.探究一:用四邊形的對角線把四邊形分割成 2個三角形,共有多少種不同的分割方案?
如圖①,圖②,顯然,只有2種不同的分割方案.所以, P4=2.探究二:用五邊形的對角線把五邊形分割成3個三角形,共有多少種不同的分割方案?不妨把分割方案分成三類:第1類:如圖③,用A,E與B連接,先把五邊形分割轉(zhuǎn)化成1如圖①,圖②,顯然,只有2種不同的分割方案.所以, P4=2.探究二:用五邊形的對角線把五邊形分割成3個三角形,共有多少種不同的分割方案?再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.第2類:如圖④,用A,E與C連接,把五邊形分割成3個三角形,有1種不同的分割1-P4方案,可視為2種分割方案.第3類:圖⑤,用A,E與D連接,先把五邊形分割轉(zhuǎn)化成 1個三角形和1個四邊形,再把四邊形分割成2個三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.10所以,P5=(種)所以,P5=(種)探究三:用六邊形的對角線把六邊形分割成4個三角形,共有多少種不同的分割方案?探究三:用六邊形的對角線把六邊形分割成4個三角形,共有多少種不同的分割方案?不妨把分割方案分成四類:第1類:如圖⑥,用A,F與B連接,先把六邊形分割轉(zhuǎn)化成1個三角形和1個五邊形,再把五邊形分割成3個三角形,由探究二知,有 P5種不同的分割方案.所以,此類共有P5種不同的分割方案.第2類:如圖⑦,用A,F與C連接,先把六邊形分割轉(zhuǎn)化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有 P4種不同的分割方案.所以,此類共有P4種分割方案第3類:如圖⑧,用A,F與D連接,先把六邊形分割轉(zhuǎn)化成2個三角形和1個四邊形.再把四邊形分割成2個三角形,由探究一知,有 P4種不同的分割方案.所以,此類共有P4種分割方案.第4類:如圖⑨,用A,F與E連接,先把六邊形分割轉(zhuǎn)化成1個三角形和1個五邊形.再把五邊形分割成3個三角形,由探究二知,有 P5種不同的分割方案.所以,此類共有P5種分割方案.2 2 14所以,P6= 5 5 5 (種)探究四:用七邊形的對角線把七邊形分割成 5個三角形,則P7與P6的關(guān)系為:P6PP6P7=種不同的分割方案.(結(jié)論)用n邊形的對角線把n邊形分割成(n-2)個三角形,共有多少種不同的分割方案(n>@?(直接寫出Pn與Pn-1的關(guān)系式,不寫解答過程).(應(yīng)用)用八邊形的對角線把八邊形分割成 6個三角形,共有多少種不同的分割方案?(應(yīng)用上述結(jié)論,寫出解答過程)21.如圖,已知:點B、F、C、D在同一直線上,且FB=CD,AB//DE,AB=ED,請你根據(jù)上述條件,判斷/A與/E的大小關(guān)系,并給出證明..因式分解:(1)2xta-t>)-(b-a)|; ⑵3^-21; ⑶(己+b尸+60*助+9.計算:(1)(-a?22)(-b)2+(-2a3b2)2+(-2a3b2) (2)(-2x3y2-3x2y2+2xy)exy24.多邊形的內(nèi)角和與某一外角的度數(shù)總和為 1350。,那么這個多邊形的邊數(shù)是多少?.化簡:(1)(x2-2y)(xy2)3; (2)(-a)3?(-2ab2)3-4ab27a5b41ab3-5.
2.計算:(1)一工m2n?(-mn2)22(x2-2x)(2x+3)+(2x)(2x+y)(2x-y)+(x+y)2-2(2x2+xy)一a2b2(ab-b2)^a~~—ab27.先化簡,再求值:僅中心-舊4不力“yr.其中x、y滿足:/+4y?+2x-4y+2=0答案2一1等于( ).2B.yC.-2D.【考點】負(fù)整數(shù)指數(shù)幕.【分析】根據(jù)負(fù)整數(shù)指數(shù)幕與正整數(shù)指數(shù)幕互為倒數(shù),可得答案.【解答】解:原式二,故選:B..下列運算正確的是( )A.a+a=a2B.a2?a3=a6C.(—2a2)2=4a4D.(a—2)2=a2-4【考點】完全平方公式;合并同類項;同底數(shù)幕的乘法;幕的乘方與積的乘方.【分析】根據(jù)合并同類項法則、幕的運算、完全平方式分別計算可得答案.【解答】解:A、a+a=2a,此選項錯誤;B、a2?a3=a5,此選項錯誤;C、(-2a2)2=4a4,此選項正確;D、(a-2)2=a2-4a+4,此選項錯誤;故選:C..如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上. 如果/1=15°,那么/2的度數(shù)是( )A.15°B.25C.300D.35°【考點】平行線的性質(zhì).【分析】直接利用平行線的性質(zhì)結(jié)合等腰直角三角形的性質(zhì)得出答案.【解答】解:如圖所示:由題意可得:/1=73=15°,貝U/2=45°-/3=30°.故選:C..803-80能被( )整除.A.76B.78C.79D.82【考點】提公因式法與公式法的綜合運用.【分析】先提取公因式80,再根據(jù)平方查公式進行二次分解,即可得803-80=80X81X79,繼而求得答案.【解答】解:V803-80=80X=80X(80+1)乂(80—1)=80X81X79.?803-80能被79整除.故選C..如圖所示,分別以n邊形的頂點為圓心,以1cm為半徑畫圓,則圖中陰影部分的面積之和為( )A.兀crmB.2ttcrmiC.4兀crmiD.nttcrmi【考點】扇形面積的計算;多邊形內(nèi)角與外角.【分析】由于多邊形的外角和為360。,則所有陰影的扇形的圓心角的和為 360度,故陰影部分的面積=+12=?!窘獯稹拷猓憾?多邊形的外角和為360°,「?SA1+S\2+-+S\n=S/=ttX12二兀(cm2).故選A...二元一次方程2x+5y=32的正整數(shù)解有( )組.A.3B.4C.5D.6【考點】二元一次方程的解.【分析】把方程用含x的式子表示出y,再根據(jù)x、y均為正整數(shù)進行討論即可求得答案.【解答】解:方程2x+5y=32可變形為y=^--,5X、y均為正整數(shù),.32-2x>0且為5的倍數(shù),當(dāng)x=1時,y=6,當(dāng)x=6時,y=4,當(dāng)x=11時,y=2,「?方程2x+5y=32的正整數(shù)解有3組,故選A.D解:①-a2-b2符號相同,故不能用平方差公式分解;②9x2-4y2符合平方差公式的特點,可直接應(yīng)用平方差公式分解;③x2-4y2符合平方差公式的特點,可直接應(yīng)用平方差公式分解;④(-m)2-(川)2=m2-n2,符合平方差公式的特點,可以利用平方差公式分解;⑤-144a2+i21b2符合平方差公式的特點,可直接應(yīng)用平方差公式分解;⑥可提取-2后得-2(m2-4n2),符合平方差公式的特點,可以用平方差公式分解.能用平方差公式分解的有 5個.故選D.D解:這個正多邊形的邊數(shù): 360°與0°=12,故選D.A解:A.原式=x6,故本選項正確;B.不是同類項,不能合并,故本選項錯誤;C.原式=x10,故本選項錯誤;D,原式=x9,故本選項錯誤 故選A.A解:?點(-2,-3)向上平移3個單位,,平移后的點的坐標(biāo)為:(-2,-3+3),即(-2,0),故選A.(4,-1)解:平移后點P的坐標(biāo)為(4.-1).故答案為(4,-1)50B:|''AD//BC,4FB二65”,J,上DEF=65又y3EF=4TEF二65、"DEF二65*\±AEry二1的"?6與"-65150"故答案為:50..現(xiàn)有若干張卡片,分別是正方形卡片A、B和長方形卡片C,卡片大小如圖所示.如果要拼一個長為(3a+b),寬為(a+2b)的大長方形,則需要C類卡片7張.3 b a【考點】多項式乘多項式.【分析】根據(jù)長方形的面積=長乂寬,求出長為3a+b,寬為a+2b的大長方形的面積是多少,判斷出需要C類卡片多少張即可.【解答】解:長為3a+b,寬為a+2b的長方形的面積為:(3a+b)(a+2b)=3a2+7ab+2b2,.「A類卡片的面積為a2,B類卡片的面積為b2,C類卡片的面積為ab,「?需要A類卡片3張,B類卡片2張,C類卡片7張.故答案為:7.4.若3x=4,9y=7,貝U3x2y的值為亍【考點】同底數(shù)幕的除法;幕的乘方與積的乘方.【分析】根據(jù)3x2y=3x-32y=3x-9y即可代入求解.【解答】解:3x2y=3x+32y=3x+9y=j.故答案是:專..若m—n=3,mn=-2,貝Um2+n2=5.【考點】完全平方公式.【分析】直接利用完全平方公式將原式變形進而將已知代入求出答案.【解答】解:,「m-n=3,mn=-2,m2+n2=(m—n)2+2mn=32+2X(-2)=5.故答案為:5.16.如圖①:MAi//NA2,圖②:MAi//NA3,圖③:MAi//NA4,圖④:MAi//NA5,…,則第n個圖中的/Ai+/A2+/A3+?+/An+i=180?n°(用含n的代數(shù)式表示)【考點】平行線的性質(zhì).【分析】分別求出圖①、圖②、圖③中,這些角的和,探究規(guī)律后,理由規(guī)律解決問題即可.【解答】解:如圖①中,/Ai+ZA2=i80=iXi800,如圖②中,/Ai+ZA2+ZA3=360°=2xi80°,如圖③中,/Ai+/A2+/A3+/A4=540°=3Xi80°,第個圖,/Ai+/A2+/A3+??+/An+i學(xué)會從=n?i80°,故答案為i80?n2x42x4解:原式=2x3=(2x 3)(2x 3).故答案為:(2x 3)解:原式=2x2(x+3)(x-3)詳解:原式=219.-6x+2y-1解:(3x2y—xy2+xy)十一xy)=3x2y^(—xy)—xy2^<—xy)+xy^<—xy)=—6x+2y—1.故答案為:—6x+2y-1.18;42; ;132種;解:P4=2,P5= ,P6= ,根據(jù)規(guī)律可得P7= = =42,進一步推導(dǎo)規(guī)律:,根據(jù)公式,p8= =132.ZA=ZE,理由解:結(jié)論:ZA=ZE.理由:???AB//DE,?./B=ZD,???BF=CD,BC=DF,在AABC和4EDF中,ABC^AEDF(SAS),?./A=ZE.(1) (2) (3)解:(1)原式=2x(a-b)+(a-b)=(a-b)(2x+1);(2)原式=3(a2-9)=3(a+3)(a-3);(3)原式=如+b+m).3(1)-3a3b2;(2)-x2y-2xy+1.解:(1)原式=-a3沖2+4a6b4+(-2a3b2)=-a3b2-2a3b2=-3a3b2;(2)原式=-x2y-?xy+1.9解:設(shè)邊數(shù)為n,外角為x,則x+(n-2)x180=1350.??.x=1350-180(n-2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療機構(gòu)新冠疫情應(yīng)對預(yù)案
- 互聯(lián)網(wǎng)企業(yè)開發(fā)團隊定崗方案
- 心理委員溝通技巧提升方案
- 眼科醫(yī)生崗位年度工作計劃
- 瑜伽老師崗位說明書
- 產(chǎn)品主管崗位年度工作總結(jié)
- 電商主播崗位述職報告
- 涵閘施工項目風(fēng)險管理方案
- 房地產(chǎn)中介崗位年終總結(jié)
- 極譜式柔性溶解氧智能傳感器研發(fā)
- 餐飲行業(yè)報告:中餐出海
- 2024年江蘇鐘吾大數(shù)據(jù)發(fā)展集團有限公司招聘筆試參考題庫含答案解析
- 青少年數(shù)獨智力運動會U12組數(shù)獨賽前集訓(xùn)題
- 醫(yī)院健康教育培訓(xùn)課件
- GH/T 1419-2023野生食用菌保育促繁技術(shù)規(guī)程灰肉紅菇
- ISO9001:2015標(biāo)準(zhǔn)內(nèi)容講解
- 高一英語語法知識點北師大
- 鼻咽癌的放射治療課件
- 明孝端皇后九龍九鳳冠
- 生殖實驗室簡介課件
- 注塑車間規(guī)劃方案
評論
0/150
提交評論