2022-2023學年宜賓市重點中學數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2022-2023學年宜賓市重點中學數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2022-2023學年宜賓市重點中學數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2022-2023學年宜賓市重點中學數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2022-2023學年宜賓市重點中學數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.用配方法解方程,下列配方正確的是()A. B.C. D.2.化簡的結(jié)果是()A. B. C. D.3.反比例函數(shù)y=的圖象經(jīng)過點(3,﹣2),下列各點在圖象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)4.如圖,的半徑為,圓心到弦的距離為,則的長為()A. B. C. D.5.如圖,正六邊形內(nèi)接于圓,圓半徑為2,則六邊形的邊心距的長為()A.2 B. C.4 D.6.如圖,CD是⊙O的直徑,已知∠1=30°,則∠2等于()A.30° B.45° C.60° D.70°7.拋物線y=x2+2x-2最低點坐標是()A.(2,-2) B.(1,-2) C.(1,-3) D.(-1,-3)8.如圖,AB⊥BD,CD⊥BD,垂足分別為B、D,AC和BD相交于點E,EF⊥BD垂足為F.則下列結(jié)論錯誤的是()A.AEEC=BEED B.AE9.如圖,若a<0,b>0,c<0,則拋物線y=ax2+bx+c的大致圖象為()A. B. C. D.10.下列條件中,能判斷四邊形是菱形的是()A.對角線互相垂直且相等的四邊形B.對角線互相垂直的四邊形C.對角線相等的平行四邊形D.對角線互相平分且垂直的四邊形11.若函數(shù)y=(3﹣m)﹣x+1是二次函數(shù),則m的值為()A.3 B.﹣3 C.±3 D.912.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.4二、填空題(每題4分,共24分)13.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.14.如圖,正方形ABOC與正方形EFCD的邊OC、CD均在x軸上,點F在AC邊上,反比例函數(shù)的圖象經(jīng)過點A、E,且,則________.15.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)的圖像上部分點的橫坐標x和縱坐標y的對應(yīng)值如下表x…-10123…y…-3-3-139…關(guān)于x的方程ax2+bx+c=0一個負數(shù)解x1滿足k<x1<k+1(k為整數(shù)),則k=________.16.方程的實數(shù)根為__________.17.如圖,現(xiàn)有測試距離為5m的一張視力表,表上一個E的高AB為2cm,要制作測試距離為3m的視力表,其對應(yīng)位置的E的高CD為____cm.18.如圖,在山坡上種樹時,要求株距(相鄰兩樹間的水平距離)為6m.測得斜坡的斜面坡度為i=1:(斜面坡度指坡面的鉛直高度與水平寬度的比),則斜坡相鄰兩樹間的坡面距離為_____.三、解答題(共78分)19.(8分)如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.(1)求證:EB=DC;(2)連接DE,若∠BED=50°,求∠ADC的度數(shù).20.(8分)如圖,,平分,且交于點,平分,且交于點,與相交于點,連接求的度數(shù);求證:四邊形是菱形.21.(8分)已知關(guān)于的一元二次方程.(1)若方程有實數(shù)根,求的取值范圍;(2)若方程的兩個實數(shù)根的倒數(shù)的平方和等于14,求的值.22.(10分)如圖,小明欲利用測角儀測量樹的高度.已知他離樹的水平距離BC為10m,測角儀的高度CD為1.5m,測得樹頂A的仰角為33°.求樹的高度AB.(參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)23.(10分)已知關(guān)于x的方程.求證:不論m為何值,方程總有實數(shù)根;當m為何整數(shù)時,方程有兩個不相等的正整數(shù)根?24.(10分)已知關(guān)于的一元二次方程有兩個不相等的實數(shù)根,.(1)若為正整數(shù),求的值;(2)若,滿足,求的值.25.(12分)如圖,直線與軸交于點,與軸交于點,拋物線與直線交于,兩點,點是拋物線的頂點.(1)求拋物線的解析式;(2)點是直線上方拋物線上的一個動點,其橫坐標為,過點作軸的垂線,交直線于點,當線段的長度最大時,求的值及的最大值.(3)在拋物線上是否存在異于、的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.26.如圖,在中,,點為邊的中點,請按下列要求作圖,并解決問題:(1)作點關(guān)于的對稱點;(2)在(1)的條件下,將繞點順時針旋轉(zhuǎn),①面出旋轉(zhuǎn)后的(其中、、三點旋轉(zhuǎn)后的對應(yīng)點分別是點、、);②若,則________.(用含的式子表示)

參考答案一、選擇題(每題4分,共48分)1、C【分析】配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)的絕對值一半的平方.【詳解】解:等式兩邊同時加上一次項系數(shù)的絕對值一半的平方22,,∴;故選:C.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應(yīng)用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).2、B【解析】根據(jù)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加計算即可.【詳解】a2?a4=a2+4=a1.故選:B.3、D【解析】分析:直接利用反比例函數(shù)圖象上點的坐標特點進而得出答案.詳解:∵反比例函數(shù)y=的圖象經(jīng)過點(3,-2),∴xy=k=-6,A、(-3,-2),此時xy=-3×(-2)=6,不合題意;B、(3,2),此時xy=3×2=6,不合題意;C、(-2,-3),此時xy=-3×(-2)=6,不合題意;D、(-2,3),此時xy=-2×3=-6,符合題意;故選D.點睛:此題主要考查了反比例函數(shù)圖象上點的坐標特征,正確得出k的值是解題關(guān)鍵.4、D【分析】過點O作OC⊥AB于C,連接OA,根據(jù)勾股定理求出AC長,根據(jù)垂徑定理得出AB=2CA,代入求出即可.【詳解】過點O作OC⊥AB于C,連接OA,則OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC過圓心O,∴AB=2AC=16,故選D.【點睛】本題主要考查了勾股定理和垂徑定理等知識點的應(yīng)用,正確作出輔助線是關(guān)鍵.5、D【分析】連接OB、OC,證明△OBC是等邊三角形,得出即可求解.【詳解】解:連接OB、OC,如圖所示:則∠BOC=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM為30°、60°、90°的直角三角形,∴,故選:D.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、垂徑定理、勾股定理、等邊三角形的判定與性質(zhì);熟練掌握正六邊形的性質(zhì),證明三角形是等邊三角形和運用垂徑定理求出BM是解決問題的關(guān)鍵.6、C【解析】試題分析:如圖,連接AD.∵CD是⊙O的直徑,∴∠CAD=90°(直徑所對的圓周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所對的圓周角相等),∴∠2=60°考點:圓周角定理7、D【分析】利用配方法把拋物線的一般式轉(zhuǎn)化為頂點式,再寫出頂點坐標即可.【詳解】∵,且,

∴最低點(頂點)坐標是.

故選:D.【點睛】此題考查利用頂點式求函數(shù)的頂點坐標,注意根據(jù)函數(shù)的特點靈活運用適當?shù)姆椒ń鉀Q問題.8、A【解析】利用平行線的性質(zhì)以及相似三角形的性質(zhì)一一判斷即可.【詳解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故選項故選:A.【點睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.9、B【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】∵a<0,∴拋物線的開口方向向下,故第三個選項錯誤;∵c<0,∴拋物線與y軸的交點為在y軸的負半軸上,故第一個選項錯誤;∵a<0、b>0,對稱軸為x=>0,∴對稱軸在y軸右側(cè),故第四個選項錯誤.故選B.10、D【解析】利用菱形的判定方法對各個選項一一進行判斷即可.【詳解】解:A、對角線互相垂直相等的四邊形不一定是菱形,此選項錯誤;B、對角線互相垂直的四邊形不一定是菱形,此選項錯誤;C、對角線相等的平行四邊形也可能是矩形,此選項錯誤;D、對角線互相平分且垂直的四邊形是菱形,此選項正確;故選:D.【點睛】本題考查了菱形的判定,平行四邊形的性質(zhì),熟練運用這些性質(zhì)是本題的關(guān)鍵.11、B【分析】根據(jù)二次函數(shù)的定義來求解,注意二次項的系數(shù)與次數(shù).【詳解】根據(jù)二次函數(shù)的定義,可知

m2-7=2

,且

3-m≠0

,解得

m=-3

,所以選擇B.故答案為B【點睛】本題考查了二次函數(shù)的定義,注意二次項的系數(shù)不能為0.12、B【解析】此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點關(guān)于原點對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點.二、填空題(每題4分,共24分)13、【解析】根據(jù)弧長公式可得:=,故答案為.14、6【分析】設(shè)正方形ABOC與正方形EFCD的邊長分別為m,n,根據(jù)S△AOE=S梯形ACDE+S△AOC-S△ADE,可求出m2=6,然后根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義即可求解.【詳解】設(shè)正方形ABOC與正方形EFCD的邊長分別為m,n,則OD=m+n,∵S△AOE=S梯形ACDE+S△AOC-S△ADE,∴,∴m2=6,∵點A在反比例函數(shù)的圖象上,∴k=m2=6,故答案為:6.【點睛】本題考查了正方形的性質(zhì),割補法求圖形的面積,反比例函數(shù)比例系數(shù)k的幾何意義,從反比例函數(shù)(k為常數(shù),k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標原點為頂點的矩形的面積等于常數(shù).15、-1【分析】首先利用表中的數(shù)據(jù)求出二次函數(shù),再利用求根公式解得x1,再利用夾逼法可確定x1

的取值范圍,可得k.【詳解】解:把x=0,y=-1,x=1,y=-1,x=-1,y=-1代入y=ax2+bx+c得,解得,∴y=x2+x-1,∵△=b2-4ac=12-4×1×(-1)=11,

∴x==?1±,

∵<0,∴=?1-<0,

∵-4≤-≤-1,

∴,

∴-1≤?1?≤,

∵整數(shù)k滿足k<x1<k+1,

∴k=-1,

故答案為:-1.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),解題的關(guān)鍵是求出二次函數(shù)的解析式.16、【分析】原方程化成兩個方程和,分別計算即可求得其實數(shù)根.【詳解】即或,當時,,當時,∵,,,∴,∴方程無實數(shù)根,∴原方程的實數(shù)根為:.故答案為:.【點睛】本題考查了利用因式分解法解方程、方程實數(shù)根的定義以及一元二次方程的根的判別式,熟練掌握一元二次方程的根的判別式是解題的關(guān)鍵.17、1.1【分析】證明△OCD∽△OAB,然后利用相似比計算出CD即可.【詳解】解:OB=5m,OD=3m,AB=1cm,∵CD∥AB,∴△OCD∽△OAB,∴,即,∴CD=1.1,即對應(yīng)位置的E的高CD為1.1cm.故答案為1.1.【點睛】本題考查了相似三角形的應(yīng)用:常常構(gòu)造“A”型或“X”型相似圖,利用三角形相似的性質(zhì)求相應(yīng)線段的長.18、4米.【分析】首先根據(jù)斜面坡度為i=1:求出株距(相鄰兩樹間的水平距離)為6m時的鉛直高度,再利用勾股定理計算出斜坡相鄰兩樹間的坡面距離.【詳解】由題意水平距離為6米,鉛垂高度2米,∴斜坡上相鄰兩樹間的坡面距離=(m),故答案為:4米.【點睛】此題考查解直角三角形的應(yīng)用,解題關(guān)鍵是掌握計算法則.三、解答題(共78分)19、(1)證明見解析;(2)110°【分析】(1)根據(jù)等邊三角形的性質(zhì)可得∠BAC=60°,AB=AC,由旋轉(zhuǎn)的性質(zhì)可得∠DAE=60°,AE=AD,利用SAS即可證出≌,從而證出結(jié)論;(2)根據(jù)等邊三角形的判定定理可得為等邊三角形,從而得出∠AED=60°,由(1)中全等可得∠AEB=∠ADC,求出∠AEB即可求出結(jié)論.【詳解】解:(1)∵是等邊三角形,∴∠BAC=60°,AB=AC.∵線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在和中,∵,∴≌.∴EB=DC.(2)如圖,由(1)得∠DAE=60°,AE=AD,∴為等邊三角形.∴∠AED=60°,由(1)得≌,∴∠AEB=∠ADC.∵∠BED=50°,∴∠AEB=∠AED+∠BED=110°,∴∠ADC=110°.【點睛】此題考查的是等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和旋轉(zhuǎn)的性質(zhì),掌握等邊三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)和旋轉(zhuǎn)的性質(zhì)是解決此題的關(guān)鍵.20、(1);(2)見解析.【分析】(1)已知C、BD分別是∠BAD、∠ABC的平分線,根據(jù)角平分線的定義可得∠DAC=∠BAC,∠ABD=∠DBC,又因AE?//?BF,根據(jù)平行線的性質(zhì)可得∠DAB+∠CBA=180°,即可得∠BAC+∠ABD=90°,∠AOD=90°;(2)根據(jù)平行線的性質(zhì)和角平分線的定義易證AB=BC,AB=AD,即可得AD=BC,再由AD?//?BC,根據(jù)一組對邊平行且相等的四邊形為平行四邊形可得四邊形ABCD是平行四邊形,再根據(jù)一組鄰邊相等的平行四邊形為菱形即可判定四邊形ABCD是菱形.【詳解】∵、分別是、的平分線,∴,,∵,∴,∴,∴;證明:∵,∴,,∵、分別是、的平分線,∴,,∴,,∴,,∴,∵,∴四邊形是平行四邊形,∵,∴四邊形是菱形.【點睛】本題考查了平行線的性質(zhì)、角平分線的定義、等腰三角形的判定及性質(zhì)、菱形的判定,證明四邊形ABCD是平行四邊形是解決本題的關(guān)鍵.21、(1)且;(2)【分析】(1)根據(jù)方程有實數(shù)根得出,且解之可得;

(2)利用根與系數(shù)的關(guān)系可用k表示出的值,根據(jù)條件可得到關(guān)于k的方程,可求得k的值,注意利用根的判別式進行取舍.【詳解】解:(1)由于是一元二次方程且有實數(shù)根,所以,即,且∴且(2)設(shè)方程的兩個根為,則,∴整理,得解得根據(jù)(1)中且,得.【點睛】此題主要考查了根的判別式和根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.22、8米【詳解】解:如圖,過點D作DE⊥AB,垂足為E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:樹的高度AB約為8m.23、(1)見解析;(2).【解析】計算根的判別式,證明;因式分解求出原方程的兩個根,根據(jù)m為整數(shù)、兩個不相等的正整數(shù)根得到m的值.【詳解】,,,,即,不論m為何值,方程總有實數(shù)根.,,,方程有兩個不相等的正整數(shù)根,.【點睛】本題考查了一元二次方程根的判別式、一元二次方程的解法解決的關(guān)鍵是用因式分解法求出方程的兩個根.24、(1),2;(2)【分析】(1)根據(jù)關(guān)于的一元二次方程有兩個不相等的實數(shù)根,得到,于是得到結(jié)論;(2)由根與系數(shù)的關(guān)系可得,,代入,解方程即可得到結(jié)論.【詳解】(1)∵關(guān)于的一元二次方程有兩個不相等的實數(shù)根,∴,解得:,∵為正整數(shù),∴,2;(2)∵,,∵,∴,∴,解得:,,∵,∴.【點睛】本題考查的是一元二次方程根與系數(shù)的關(guān)系及根的判別式,先判斷出a的取值范圍,再由根與系數(shù)的關(guān)系得出方程組是解答此題的關(guān)鍵.25、(1);(2)當時,PM有最大值;(3)存在,理由見解析;,,,【分析】(1)先求得點、的坐標,再代入二次函數(shù)表達式即可求得答案;(2)設(shè)點橫坐標為,則,,求得PM關(guān)于的表達式,即可求解;(3)設(shè),則,求得,根據(jù)等腰直角三角形的性質(zhì),求得,即可求得答案.【詳解】(1),令,則,令,則,故點、的坐標分別為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論