版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù),是虛數(shù)單位,則下列結(jié)論正確的是A. B.的共軛復(fù)數(shù)為C.的實(shí)部與虛部之和為1 D.在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于第一象限2.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件3.將函數(shù)的圖象向左平移個(gè)單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.4.學(xué)業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個(gè)等級.某班共有名學(xué)生且全部選考物理、化學(xué)兩科,這兩科的學(xué)業(yè)水平測試成績?nèi)鐖D所示.該班學(xué)生中,這兩科等級均為的學(xué)生有人,這兩科中僅有一科等級為的學(xué)生,其另外一科等級為,則該班()A.物理化學(xué)等級都是的學(xué)生至多有人B.物理化學(xué)等級都是的學(xué)生至少有人C.這兩科只有一科等級為且最高等級為的學(xué)生至多有人D.這兩科只有一科等級為且最高等級為的學(xué)生至少有人5.一艘海輪從A處出發(fā),以每小時(shí)24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點(diǎn)間的距離是()A.6海里 B.6海里 C.8海里 D.8海里6.A. B. C. D.7.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.8.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.9.給出下列四個(gè)命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個(gè)數(shù)是()A. B. C. D.10.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值11.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.12.若雙曲線:()的一個(gè)焦點(diǎn)為,過點(diǎn)的直線與雙曲線交于、兩點(diǎn),且的中點(diǎn)為,則的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知邊長為的菱形中,,現(xiàn)沿對角線折起,使得二面角為,此時(shí)點(diǎn),,,在同一個(gè)球面上,則該球的表面積為________.14.已知函數(shù)f(x)=若關(guān)于x的方程f(x)=kx有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是________.15.已知,則展開式中的系數(shù)為__16.如圖,直線平面,垂足為,三棱錐的底面邊長和側(cè)棱長都為4,在平面內(nèi),是直線上的動點(diǎn),則點(diǎn)到平面的距離為_______,點(diǎn)到直線的距離的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別為內(nèi)角,,的對邊,若同時(shí)滿足下列四個(gè)條件中的三個(gè):①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)18.(12分)設(shè)橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,已知橢圓離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為3.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線斜率的取值范圍.19.(12分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點(diǎn),、分別為線段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.20.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計(jì)男女1055合計(jì)(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63521.(12分)已知函數(shù),.(1)當(dāng)時(shí),判斷是否是函數(shù)的極值點(diǎn),并說明理由;(2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用復(fù)數(shù)的四則運(yùn)算,求得,在根據(jù)復(fù)數(shù)的模,復(fù)數(shù)與共軛復(fù)數(shù)的概念等即可得到結(jié)論.【詳解】由題意,則,的共軛復(fù)數(shù)為,復(fù)數(shù)的實(shí)部與虛部之和為,在復(fù)平面內(nèi)對應(yīng)點(diǎn)位于第一象限,故選D.【點(diǎn)睛】復(fù)數(shù)代數(shù)形式的加減乘除運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化,其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)的實(shí)部為、虛部為、模為、對應(yīng)點(diǎn)為、共軛為.2、A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力.3、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)椋?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、D【解析】
根據(jù)題意分別計(jì)算出物理等級為,化學(xué)等級為的學(xué)生人數(shù)以及物理等級為,化學(xué)等級為的學(xué)生人數(shù),結(jié)合表格中的數(shù)據(jù)進(jìn)行分析,可得出合適的選項(xiàng).【詳解】根據(jù)題意可知,名學(xué)生減去名全和一科為另一科為的學(xué)生人(其中物理化學(xué)的有人,物理化學(xué)的有人),表格變?yōu)椋何锢砘瘜W(xué)對于A選項(xiàng),物理化學(xué)等級都是的學(xué)生至多有人,A選項(xiàng)錯(cuò)誤;對于B選項(xiàng),當(dāng)物理和,化學(xué)都是時(shí),或化學(xué)和,物理都是時(shí),物理、化學(xué)都是的人數(shù)最少,至少為(人),B選項(xiàng)錯(cuò)誤;對于C選項(xiàng),在表格中,除去物理化學(xué)都是的學(xué)生,剩下的都是一科為且最高等級為的學(xué)生,因?yàn)槎际堑膶W(xué)生最少人,所以一科為且最高等級為的學(xué)生最多為(人),C選項(xiàng)錯(cuò)誤;對于D選項(xiàng),物理化學(xué)都是的最多人,所以兩科只有一科等級為且最高等級為的學(xué)生最少(人),D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查合情推理,考查推理能力,屬于中等題.5、A【解析】
先根據(jù)給的條件求出三角形ABC的三個(gè)內(nèi)角,再結(jié)合AB可求,應(yīng)用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點(diǎn)睛】本題考查正弦定理的實(shí)際應(yīng)用,關(guān)鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關(guān)系,利用正余弦定理求解.屬于中檔題.6、A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.7、C【解析】
轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.8、B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)?,所?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.9、B【解析】
①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個(gè)是假命題,故①錯(cuò)誤;當(dāng)內(nèi)角為時(shí),不是象限角,故②錯(cuò)誤;由特稱命題的否定是全稱命題知③正確;因?yàn)?,所以,所以“”是“”的必要條件,故④正確.故選:B.【點(diǎn)睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.10、D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項(xiàng)的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項(xiàng)的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項(xiàng)的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】對于A選項(xiàng),由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項(xiàng)正確;對于B選項(xiàng),由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項(xiàng)正確;對于C選項(xiàng),由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項(xiàng)正確;對于D選項(xiàng),在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計(jì)確診人數(shù)不在月日左右達(dá)到峰值,D選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.11、A【解析】
由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.12、D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,結(jié)合焦點(diǎn)的坐標(biāo),可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點(diǎn)為,可得,解答,又由,即,解得,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:D.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程的求解,其中解答中屬于運(yùn)用雙曲線的焦點(diǎn)和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分別取,的中點(diǎn),,連接,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計(jì)算可得;【詳解】如圖,分別取,的中點(diǎn),,連接,則易得,,,,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點(diǎn)睛】本題考查多面體的外接球的計(jì)算,屬于中檔題.14、【解析】由圖可知,當(dāng)直線y=kx在直線OA與x軸(不含它們)之間時(shí),y=kx與y=f(x)的圖像有兩個(gè)不同交點(diǎn),即方程有兩個(gè)不相同的實(shí)根.15、1.【解析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計(jì)算公式,求出展開式中的系數(shù).【詳解】∵已知,則,
它表示4個(gè)因式的乘積.
故其中有2個(gè)因式取,一個(gè)因式取,剩下的一個(gè)因式取1,可得的項(xiàng).
故展開式中的系數(shù).
故答案為:1.【點(diǎn)睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計(jì)算公式,屬于中檔題.16、【解析】
三棱錐的底面邊長和側(cè)棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點(diǎn)到平面的距離;,可得點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長為,則中線長為,點(diǎn)到平面的距離為,點(diǎn)是以為直徑的球面上的點(diǎn),所以到直線的距離為以為直徑的球面上的點(diǎn)到的距離,最大距離為分別過和的兩個(gè)平行平面間距離加半徑.又三棱錐的底面邊長和側(cè)棱長都為4,以下求過和的兩個(gè)平行平面間距離,分別取中點(diǎn),連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【點(diǎn)睛】本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時(shí)成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因?yàn)?,且,所以,所以,矛?所以不能同時(shí)滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因?yàn)?,所以,?解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點(diǎn)睛】本題考查三角形能否成立的判斷,同時(shí)也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計(jì)算,要結(jié)合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由題意可得,,,解得即可求出橢圓的C的方程;(Ⅱ)由已知設(shè)直線l的方程為y=k(x-2),(k≠0),聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系求得B的坐標(biāo),再寫出MH所在直線方程,求出H的坐標(biāo),由BF⊥HF,解得.由方程組消去y,解得,由,得到,轉(zhuǎn)化為關(guān)于k的不等式,求得k的范圍.【詳解】(Ⅰ)因?yàn)檫^焦點(diǎn)且垂直于長軸的直線被橢圓截得的線段長為3,所以,因?yàn)闄E圓離心率為,所以,又,解得,,,所以橢圓的方程為;(Ⅱ)設(shè)直線的斜率為,則,設(shè),由得,解得,或,由題意得,從而,由(Ⅰ)知,,設(shè),所以,,因?yàn)?,所以,所以,解得,所以直線的方程為,設(shè),由消去,解得,在中,,即,所以,即,解得,或.所以直線的斜率的取值范圍為.【點(diǎn)睛】本題考查在直線與橢圓的位置關(guān)系中由已知條件求直線的斜率取值范圍問題,還考查了由離心率求橢圓的標(biāo)準(zhǔn)方程,屬于難題.19、(1);(2).【解析】
(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn)、,聯(lián)立直線與橢圓的方程,列出韋達(dá)定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因?yàn)?,,所以橢圓的方程為;(2)由,得.設(shè)、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因?yàn)?,,所?即,將其整理為.因?yàn)?,所以?所以,即.【點(diǎn)睛】本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化,考查計(jì)算能力,屬于中等題.20、(1)無關(guān);(2),.【解析】
(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計(jì)男301545女451055合計(jì)7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得.因?yàn)?.030<3.84
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年蕪湖辦理客運(yùn)從業(yè)資格證版試題
- 2024年山西客運(yùn)駕駛員考試試卷及答案詳解
- 2024年哈爾濱客運(yùn)資格證考試題庫答案
- 2024年廣東客運(yùn)從業(yè)資格證
- 人教部編版二年級語文上冊第7課《媽媽睡了》精美課件
- 吉首大學(xué)《功能材料》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉首大學(xué)《散打格斗運(yùn)動5》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《素描實(shí)訓(xùn)II》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年供應(yīng)貨品合作合同范本
- 吉林師范大學(xué)《中小學(xué)書法課程與教學(xué)論》2021-2022學(xué)年第一學(xué)期期末試卷
- 《電工電子技術(shù)基礎(chǔ)》高職全套教學(xué)課件
- 人教版數(shù)學(xué)五年級上冊5.1《用字母表示數(shù)》說課稿
- 大量收購青苗姜合同
- 個(gè)人醫(yī)保承諾書模板
- 2024年農(nóng)業(yè)農(nóng)村知識考試必背復(fù)習(xí)題庫(濃縮500題)
- 大學(xué)生職業(yè)生涯規(guī)劃《我的未來我做主》棕色簡約風(fēng)模板
- 缺血性腦卒中全流程規(guī)范化管理
- 醫(yī)院培訓(xùn)課件:《PPD試驗(yàn)》
- 貨車車輛定點(diǎn)維修合同協(xié)議書
- 運(yùn)動生理學(xué)智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學(xué)
- 惡性心律失常及常見心律失常識別與急診處理課件
評論
0/150
提交評論