導數(shù)的運算法則_第1頁
導數(shù)的運算法則_第2頁
導數(shù)的運算法則_第3頁
導數(shù)的運算法則_第4頁
導數(shù)的運算法則_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

導數(shù)的運算法則第一頁,共二十二頁,2022年,8月28日一、和、差、積、商的求導法則定理第二頁,共二十二頁,2022年,8月28日注1、(1)(2)可推廣到任意有限個可導函數(shù)的情形2、作為(2)的特殊情況即常數(shù)因子可以提到導數(shù)符號的外面3、作為(3)的一種特殊情況,第三頁,共二十二頁,2022年,8月28日例題分析例1解第四頁,共二十二頁,2022年,8月28日例2解例3解第五頁,共二十二頁,2022年,8月28日同理可得例4解同理可得第六頁,共二十二頁,2022年,8月28日二、反函數(shù)的導數(shù)定理即反函數(shù)的導數(shù)等于直接函數(shù)導數(shù)的倒數(shù).第七頁,共二十二頁,2022年,8月28日例5解同理可得第八頁,共二十二頁,2022年,8月28日三、復合函數(shù)的求導法則前面我們已經(jīng)會求簡單函數(shù)——基本初等函數(shù)經(jīng)有限次四則運算的結果的導數(shù),但是像等函數(shù)(復合函數(shù))是否可導,可導的話,如何求它們的導數(shù)?先看一個例子例8第九頁,共二十二頁,2022年,8月28日這里我們是先展開,再求導,若像求導數(shù),展開就不是辦法,再像求導數(shù),根本無法展開,又該怎么辦?我們從復合函數(shù)的角度來分析一下上例的結果。第十頁,共二十二頁,2022年,8月28日再如注意到由以上兩例可見:由復合而成的函數(shù)的導數(shù)恰好等于對中間變量的導數(shù)與中間變量對自變量的導數(shù)的乘積——這就是鏈式法則第十一頁,共二十二頁,2022年,8月28日定理即因變量對自變量求導,等于因變量對中間變量求導,乘以中間變量對自變量求導.(鏈式法則)第十二頁,共二十二頁,2022年,8月28日注鏈式法則——“由外向里,逐層求導”推廣例6解第十三頁,共二十二頁,2022年,8月28日例7解第十四頁,共二十二頁,2022年,8月28日例8解例9解第十五頁,共二十二頁,2022年,8月28日注1.基本初等函數(shù)的導數(shù)公式和上述求導法則是初等函數(shù)求導運算的基礎,必須熟練掌握2.復合函數(shù)求導的鏈式法則是一元函數(shù)微分學的理論基礎和精神支柱,要深刻理解,熟練應用——注意不要漏層3.對于分段函數(shù)求導問題:在定義域的各個部分區(qū)間內部,仍按初等函數(shù)的求導法則處理,在分界點處須用導數(shù)的定義仔細分析,即分別求出在各分界點處的左、右導數(shù),然后確定導數(shù)是否存在。第十六頁,共二十二頁,2022年,8月28日四、初等函數(shù)的求導問題1.常數(shù)和基本初等函數(shù)的導數(shù)公式第十七頁,共二十二頁,2022年,8月28日2.函數(shù)的和、差、積、商的求導法則設)(),(xvvxuu==可導,則(1)

vuvu

¢¢=¢

)(,(2)uccu¢=¢)((3)vuvuuv¢+¢=¢)(,

(4))0()(21¢-¢=¢vvvuvuvu.(是常數(shù))第十八頁,共二十二頁,2022年,8月28日3.復合函數(shù)的求導法則第十九頁,共二十二頁,2022年,8月28日四、二階導數(shù)問題:變速直線運動的加速度.定義記作第二十頁,共二十二頁,2022年,8月28日例10解第二十一頁,共二十二頁,2022年,8月28日五、小結注意:分段函數(shù)求導時,分界點導數(shù)用左右導數(shù)求.反函數(shù)的求導法則(注意成立條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論