普通化學(xué)化學(xué)熱力學(xué)化學(xué)反應(yīng)的方向和限度_第1頁
普通化學(xué)化學(xué)熱力學(xué)化學(xué)反應(yīng)的方向和限度_第2頁
普通化學(xué)化學(xué)熱力學(xué)化學(xué)反應(yīng)的方向和限度_第3頁
普通化學(xué)化學(xué)熱力學(xué)化學(xué)反應(yīng)的方向和限度_第4頁
普通化學(xué)化學(xué)熱力學(xué)化學(xué)反應(yīng)的方向和限度_第5頁
已閱讀5頁,還剩72頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

教學(xué)要求:1.了解rSm?及rGm?的意義并掌握rGm?的近似計算,并能應(yīng)用及判斷反應(yīng)進行的方向;掌握各種反應(yīng)的K?的意義及其與rGm?的關(guān)系,理解濃度、壓力和溫度對化學(xué)平衡的影響;3.了解反應(yīng)動力學(xué)的基本概念,了解影響反應(yīng)速率的主要因素,理解質(zhì)量作用定律及阿侖尼烏斯公式的意義及應(yīng)用。第2章化學(xué)反應(yīng)的基本原理

與大氣污染控制1主要內(nèi)容涉及化學(xué)工作者最感興趣和最關(guān)心的兩個問題:①化學(xué)反應(yīng)的方向和限度---化學(xué)熱力學(xué);②化學(xué)反應(yīng)的速率---化學(xué)動力學(xué)。應(yīng)用熱力學(xué)的基本原理研究化學(xué)反應(yīng)過程的能量變化問題主要解決化學(xué)反應(yīng)中的三個問題:

①化學(xué)反應(yīng)中能量的轉(zhuǎn)化;

②化學(xué)反應(yīng)的方向性;

③反應(yīng)進行的程度22.1化學(xué)反應(yīng)的方向和吉布斯函數(shù)2.1.1基本概念1.

自發(fā)變化(或自發(fā)過程(spontaneousprocess):在沒有外界作用下,體系自身發(fā)生變化的過程稱為自發(fā)變化(過程),或者說在一定條件下,無需外力推動(無需對系統(tǒng)作非體積功),既可自動發(fā)生的過程。2H2+O2=2H2O

NaOH+HCl=NaCl+H2O化學(xué)過程:2Na+2H2O=2NaOH+H2電流從高電位處流向低電位處ΔEΔE<0ΔE=0熱從高溫物體傳向低溫物質(zhì)ΔTΔT<0ΔT=0水往低處流ΔhΔh<0Δh=0氣體向真空膨脹ΔpΔp<0Δp=03自發(fā)過程特點:①只能單向自發(fā)進行,即相同條件下自發(fā)過程的逆過程不能發(fā)生,即有方向性②都可以用來做功③都有一定的限度--平衡自發(fā)反應(yīng):在給定條件下能自動進行的反應(yīng)稱為自發(fā)反應(yīng).為什么某些化學(xué)過程能自發(fā)進行?其驅(qū)動力是什么?一個值得深思的問題4影響過程自發(fā)的因素是?CaCO3=CaO+CO2晾衣服硝酸銨溶解2H2+O2=2H2OC

+O2=CO22Na+2H2O=2NaOH+H2

NaOH+HCl=NaCl+H2O

DrH<0反應(yīng)往往能自發(fā)進行(能量越低越穩(wěn)定)

但某些DH>0也能自發(fā)進行

如碳酸鈣的分解,冰的融化;NH4Cl的溶解5●吸熱反應(yīng),常溫下仍能進行Ba(OH)2·8H2O(s)+2NH4SCN(s)→Ba(SCN)2(s)+2NH3(g)+10H2O(l)●常溫下進行,但621K時逆轉(zhuǎn)向吸熱反應(yīng)方向進行●吸熱反應(yīng),常溫不能進行,510K以上仍是吸熱,卻能進行●高溫,低溫下都不能進行HCl(g)+NH3(g)→NH4Cl(g),rHm?=-176.91

kJ·mol-1CuSO4·5H2O(s)→CuSO4(s)+5H2O(l),rHm?=78.96kJ·mol-1N2(g)+?O2(g)→N2O(g),rHm?=81.17

kJ·mol-1

結(jié)論:焓和焓變是反應(yīng)自發(fā)過程的一種驅(qū)動力,但不是唯一的.必然存在著另一種驅(qū)動力!6(1)混亂度、熵和微觀狀態(tài)數(shù)▲

混亂度許多自發(fā)過程有混亂度增加的趨勢

●房屋的倒塌

結(jié)論:

體系有趨向于最大混亂度的傾向,體系混亂度增大有利于反應(yīng)自發(fā)地進行.2.熵和熵變●冰的融化●各種可溶鹽和糖的溶解●墨水?dāng)U散7表示體系中微觀粒子混亂度的一個熱力學(xué)函數(shù),表示系統(tǒng)混亂程度高低的函數(shù)。符號:S.單位J·K-1.是狀態(tài)函數(shù)。體系的混亂度↗,S↗。

粒子的活動范圍愈大,體系的微觀狀態(tài)數(shù)愈多,體系的混亂度愈大.體系微觀粒子數(shù)位置數(shù)微觀狀態(tài)數(shù)(1)33

6(2)3424(3)24

12▲熵(S)8▲熵與微觀粒子狀態(tài)數(shù)關(guān)系S=klnΩS---熵Ω---微觀狀態(tài)數(shù)(熱力學(xué)概率或稱混亂度)k---

Boltzman常量玻耳茲曼(BoltzmannL,1844-1906)奧地利物理學(xué)家.微觀狀態(tài)總數(shù)宏觀性質(zhì)1878年,L.Boltzman提出9Ω越大,S就越大,表明熵是系統(tǒng)混亂度的量度在隔離系統(tǒng)中發(fā)生的自發(fā)進行反應(yīng)必伴隨著熵的增加,或隔離系統(tǒng)的熵總是趨向于極大值-自發(fā)過程的熱力學(xué)準(zhǔn)則。熵增加原理(熱力學(xué)第二定律):即:

ΔS隔離>0,自發(fā)進行ΔS隔離=0,平衡狀態(tài)隔離系統(tǒng)的熵判據(jù)結(jié)論:10純物質(zhì)完整有序晶體在0K時的熵值為零,S0(完整晶體,0K)=0(2)熱力學(xué)第三定律和標(biāo)準(zhǔn)熵1906年,[德]W.H.Nernst提出,經(jīng)[德]MaxPlanch和[美]G.N.Lewis等改進,提出了熱力學(xué)第三定律:▲

熱力學(xué)第三定律:0K稍大于0K11▲標(biāo)準(zhǔn)摩爾熵(sm?)△S=ST-S0=ST(ST---絕對熵或規(guī)定熵)若純物質(zhì)完整有序晶體溫度發(fā)生變化,0KTK,則注意:在某溫度T和標(biāo)準(zhǔn)狀態(tài)下,1mol某純物質(zhì)B的絕對熵稱為B的標(biāo)準(zhǔn)摩爾熵.其符號為sm?(B,相態(tài),T)單位為:J·mol-1·K-112化學(xué)反應(yīng)的基本原理和大氣污染133、化學(xué)反應(yīng)的標(biāo)準(zhǔn)摩爾熵變:ΔrSmΘ

指按所給反應(yīng)式,進行反應(yīng)進度ξ為1mol的反應(yīng)的熵變化學(xué)反應(yīng)的基本原理和大氣污染14▲

化學(xué)反應(yīng)標(biāo)準(zhǔn)摩爾熵變(rSm?)的計算:化學(xué)反應(yīng)熵變rS=S2-S1例1求反應(yīng)aA(l)+bB(aq)=gG(s)+dD(g)的rSm?注意:Sm?隨溫度↗而↗,但只要溫度升高時,沒有引起物質(zhì)聚集態(tài)的改變,則rSm?(TK)≈rSm?(298K)298.15K時:服從Hess定律解:rSm?

=

gSm?

(G,s)+dSm?

(D,g)

-

aSm?(A,l)-bSm?(B,aq)15解:2CO(g)+O2(g)=2CO2(g)ΔrSmΘ=2SmΘ(CO2)–

2SmΘ(CO)–SmΘ(O2)

SmΘ

(J·K-1·mol-1)197.6205.0213.6ΔfHmΘ

(kJ·mol-1)-110.50-393.5ΔrHmΘ=2ΔfHmΘ(CO2)–2ΔfHmΘ(CO)-ΔfHmΘ(O2)

=2×213.6–[2×197.6+205.0]=–173.0J·K-1·mol-1=2(-393.5)–

2(-110.5)–

0=–566.0kJ·mol-1化學(xué)反應(yīng)的基本原理和大氣污染16●同一物質(zhì)、同一狀態(tài),溫度越高,就越大。●相對分子質(zhì)量相近,分子結(jié)構(gòu)復(fù)雜的,大●結(jié)構(gòu)相似,相對分子質(zhì)量不同的物質(zhì),隨相對分子質(zhì)量增大而增大●混合物或溶液的熵值往往比相應(yīng)的純物質(zhì)的熵值大?!穹磻?yīng)產(chǎn)物中氣體分子數(shù)多于反應(yīng)物分子數(shù)的反應(yīng),通常熵值增大即:S混合物>S純物質(zhì)標(biāo)準(zhǔn)摩爾熵的一些規(guī)律:●同一物質(zhì),298.15K時17反應(yīng)熱混亂度自發(fā)性舉例放熱放熱吸熱吸熱增大減小增大減小任何溫度自發(fā)進行較低溫度自發(fā)進行高溫自發(fā)進行任何溫度都不自發(fā)進行2H2O2(l)=2H2O(l)+O2(g)2N2(g)+3H2(g)=4NH3(g)CaCO3(s)=CaO(s)+CO2(g)是否是混亂度增加,反應(yīng)就自發(fā)進行?反例:NH3(g)+HCl(g)=NH4Cl(s)反應(yīng)后氣體量減少,混亂度減小。但為放熱反應(yīng)總結(jié):化學(xué)反應(yīng)的基本原理和大氣污染18

2.1.2反應(yīng)的吉布斯函數(shù)及其吉布斯函數(shù)變G優(yōu)點:綜合了兩種反應(yīng)自發(fā)性驅(qū)動力1.Gibbs函數(shù)定義:G—Gibbs函數(shù)(也稱吉布斯自由能)體系總焓中所具有的作最大有用功能力的那部分能量,這部分能量能自由地轉(zhuǎn)變?yōu)槠渌问降哪芰浚史Q“自由能”,它是推動反應(yīng)進行的推動力。G函數(shù)特征:狀態(tài)函數(shù),單位:kJ.mol-1

吉布斯(GibbsJW,1839-1903)偉大的數(shù)學(xué)物理學(xué)教授.G=H-TSG含義:192.Gibbs等溫方程—化學(xué)上最有用、最重要的方程之一

等溫等壓條件下:△G=△H-T△S(Gibbs公式)任意狀態(tài)下:△rGm=△r

Hm-T△r

Sm(Gibbs公式)標(biāo)態(tài)下:

△rGm?

=△rHm?

-T△r

Sm?

(Gibbs公式)△rGm-反應(yīng)的Gibbs摩爾函數(shù)變△rGm?-反應(yīng)的標(biāo)準(zhǔn)Gibbs摩爾函數(shù)變①△rGm和△rGm?均服從Hess定律②溫度對△rGm或

△rGm?

影響很大20ΔG服從蓋斯(Hess)定律,即:1)若某個總反應(yīng)由n個分反應(yīng)加和而成,則

ΔG總=ΔG1+ΔG2+······+ΔGn=ΔGi

2)ΔG與物質(zhì)的數(shù)量成正比,并具有加和性

如:反應(yīng)aA+bB=mC+nD的吉布斯函數(shù)變?yōu)棣1,

則反應(yīng)2aA+2bB=2mC+2nD的吉布斯函數(shù)變ΔG2=2ΔG1

3)正反應(yīng)的ΔG正與逆反應(yīng)的ΔG逆符號相反,即ΔG正=-ΔG逆注意:溫度對ΔG的影響較大(ΔG=ΔH–T·ΔS)

即:ΔG(TK)≈ΔG(298K)21

3.反應(yīng)自發(fā)性判據(jù)--Gibbs判據(jù):在定溫定壓下,任何自發(fā)變化總是體系的Gibbs函數(shù)減小.△G<0

反應(yīng)是自發(fā)的,能正向進行△G>0反應(yīng)是非自發(fā)的,能逆向進行△G=0反應(yīng)處于平衡狀態(tài)●△G受溫度影響的幾種情況(見下頁圖表)△G=△H-T·△S22恒壓下溫度對G及反應(yīng)自發(fā)性的影響類別類型G正反應(yīng)自發(fā)性隨溫度變化情況HS低溫高溫Ⅰ-+--任意溫度均自發(fā)Ⅱ---+只有低溫下自發(fā)Ⅲ+++-只有高溫下自發(fā)Ⅳ+-++任意溫度均不自發(fā)T轉(zhuǎn)23例:某反應(yīng)在298K標(biāo)準(zhǔn)狀態(tài)下不能自發(fā)進行,但經(jīng)升溫至某一溫度,該反應(yīng)卻能自發(fā)進行。從定性角度分析,應(yīng)符合的條件是-----------------------------()A.?rHm?>0,?rSm?<0B.?rHm?<0,?rSm?>0C.?rHm?>0?rSm?>0D.?rHm?<0,?rSm?<0C24如果忽略溫度、壓力對DrHm,D

rSm

的影響,則

DrGm(TK)≈D

rHm

(298K)-T

·DrSm

(298K)DrGm=D

rHm-T

·DrSm4.反應(yīng)方向轉(zhuǎn)變溫度的估算:當(dāng)DrGm

(TK)

=0時據(jù)Gibbs公式:若反應(yīng)在標(biāo)態(tài)下進行,則當(dāng)DrGm?(TK)

=0時25CaCO3(s)CaO(s)+CO2(g)D標(biāo)準(zhǔn)狀態(tài)時,下一反應(yīng)在何溫度下可自發(fā)進行?解所以上述反應(yīng)在T≥1110K時即可自發(fā)進行例2①根據(jù)Hess定律,由ΔfHm?求出ΔrHm?=

178.32kJ·mol-1由Sm?求出ΔrSm?

=160.6J·mol-1·K-1②265.

ΔrGm(簡寫ΔG)與ΔrGm?

(簡寫ΔG?

)的關(guān)系對于任意反應(yīng):令反應(yīng)商Q為:對氣相物質(zhì)而言

稱為各物質(zhì)的相對分壓

對溶液相物質(zhì)而言

稱為各物質(zhì)的相對濃度

均指相對于標(biāo)準(zhǔn)狀態(tài)而言27由化學(xué)熱力學(xué)的推導(dǎo)可得---熱力學(xué)等溫方程:

ΔG(T)=ΔG?(T)+2.303RTlgΔrGm

(T)=ΔrGm?

(T)+RTlnQ

lnQ=2.303lgQ

=ΔrGm?

(T)+2.303RTlgQ或ΔG(T)=ΔG?(T)+RTlnQ

=ΔrGm?

(T)+2.303RTlgQΔG(T)=ΔG?(T)+2.303RTlgΔG(T)=ΔG?(T)+2.303RTlgΔG(T)=ΔG?(T)+2.303RTlgΔG(T)=ΔG?(T)+2.303RTlgΔG(T)=ΔG?(T)+2.303RTlg28注意:反應(yīng)商Q的表達式的書寫應(yīng)注意如下幾點:1)若反應(yīng)式中的物質(zhì)為(l)或(s)態(tài),則該物質(zhì)不出現(xiàn)在表達式中;2)

同一個反應(yīng)式中既有氣相物質(zhì),又有溶液態(tài)物質(zhì),則Q的表達式中氣相物質(zhì)用相對分壓表示,溶液態(tài)物質(zhì)用相對濃度表示;3)混合氣體分壓的計算—道爾頓分壓定律:

p總=∑pipi—各組分氣體分壓力(各具有相同V總、T

)p總=p1+p2+p3p1p2p3V總V總V總V總29pi=

p總xi

V總=∑ViVi—各組分氣體分體積(各Vi具有相同p總、T

)由理想氣體狀態(tài)方程:pV=nRT可得:=V1+V2+V3V1V2V3P總P總P總

V總摩爾分?jǐn)?shù)xi=ni/n總同理有:Vi=

V總xi306.標(biāo)準(zhǔn)摩爾生成Gibbs函數(shù)

在標(biāo)態(tài)和溫度TK下,由參考狀態(tài)(或指定)的單質(zhì)生成1mol物質(zhì)B時反應(yīng)的標(biāo)準(zhǔn)摩爾Gibbs函數(shù)變,稱為物質(zhì)B的標(biāo)準(zhǔn)摩爾生成Gibbs函數(shù),用

表示,單位:kJ·mol-1即:反應(yīng)“mA(單質(zhì))+nB(單質(zhì))=AmBn(化合物)”與ΔfHm?

定義很相似!

的ΔrGm?=ΔfGm?(AmBn,T,相態(tài))31請寫出對應(yīng)于如下化合物ΔfGm?(或ΔfHm?

)的反應(yīng)式:

H2O(l)P2O5(s)Fe2O3(s)C2H6(g)H2SO4(l)

KClO4(s)

H2(g)+1/2O2(g)=

2Fe(s)+3/2O2(g)=

2P(s)+5/2O2(g)=

2C(s)+3H2(g)=

S(s)+H2(g)+2O2(g)=

K(s)+1/2Cl2(g)+2O2(g)=32與標(biāo)準(zhǔn)摩爾生成焓相似:337.反應(yīng)的標(biāo)準(zhǔn)摩爾吉布斯函數(shù)變(ΔG?)的計算如果T≠298.15Ka.任意溫度下:b.298.15K時:由

用Hess定律計算例2P40-41例2.3、2.4342.2化學(xué)反應(yīng)進行的程度和化學(xué)平衡△G<0正向自發(fā)△G>0正向非自發(fā)△G=0平衡狀態(tài)反應(yīng)自發(fā)性判據(jù)--Gibbs判據(jù)

注意:不能用△Gθ判斷反應(yīng)的自發(fā)性352.2.1平衡狀態(tài)和標(biāo)準(zhǔn)平衡常數(shù)判據(jù):△G=0平衡狀態(tài)---熱力學(xué)標(biāo)志1.反應(yīng)限度的判據(jù)與化學(xué)平衡平衡狀態(tài)特點:a:動---ν正=ν

逆即動態(tài)平衡(微觀)b:定---反應(yīng)物或生成物的濃度、壓力不隨時間而改變(宏觀)c:變---相對平衡e:平衡組成與達到平衡的途徑無關(guān)d:平衡是自發(fā)的36對任意可逆反應(yīng):aA(g)+bB(g)?cC(g)+dD(g){peq(A)}–a{peq(B)}–b{peq(C)}c{peq(D)}d

{peq(C)}c{peq(D)}{peq(A)}a{peq(B)}b={ceq(A)}–a{ceq(B)}–b{ceq(C)}c{ceq(D)}d{ceq(C)}c{ceq(D)}d

{ceq(A)}a{ceq(B)}b==Π{peq(B)}B=Π{ceq(B)}=Kp=Kc∵一般情況下,a+b≠c+d,導(dǎo)致Kc或Kp有量綱dB=Π{peq(B)}B=Π{ceq(B)}B=Π{ceq(B)}B=Π{ceq(B)}B=Π{ceq(B)}B=Π{ceq(B)}B372.標(biāo)準(zhǔn)平衡常數(shù)(K?)對于任意反應(yīng)

定義:K?

=Π{ceq(B)/cθ}B或③當(dāng)標(biāo)準(zhǔn)態(tài)選定后,K?只是溫度的函數(shù)。K?特點特點:①無量綱②數(shù)值取決于反應(yīng)的本性、溫度及標(biāo)準(zhǔn)態(tài)的選擇=Π{[B]/cθ}B=Π{peq(B)/pθ}BK?B=Π[pBeq/pθ]簡寫方式38K?

值越大,平衡混合物中生成物越多而反應(yīng)物越少,反之亦然.●對于氣相反應(yīng)●對于溶液中的反應(yīng)Sn2+(aq)+2Fe3+(aq)?Sn4+(aq)+2Fe2+(aq)39①直接根據(jù)配平的化學(xué)方程式寫出,但純液體、固態(tài)物質(zhì)或稀溶液的溶劑(如水)不在K?式中列出;書寫K?的表達式應(yīng)注意的事項:②K?的數(shù)值與化學(xué)計量式的寫法有關(guān);K1?

K2?=(K1?)n③K?不隨p、c及組成而變,只與溫度T有關(guān)。40恒溫恒容下,2GeO(g)+W2O6(g)2

GeWO4(g)

若反應(yīng)開始時,GeO

和W2O6

的分壓均為100.0kPa,平衡時

GeWO4(g)的分壓為98.0kPa.求平衡時GeO和W2O6的分壓以及反應(yīng)的標(biāo)準(zhǔn)平衡常數(shù).標(biāo)準(zhǔn)平衡常數(shù)的實驗測定例3

2GeO(g)+W2O6(g)

2

GeWO4(g)開始pB/kPa100.0100.00變化pB/kPa-98.098.0平衡pB/kPa100.0-98.0100.098.0

p(GeO)=100.0kPa-98.0kPa=2.0kPa

p(W2O6)=100.0kPa

-

kPa=51.0kPa解41你能寫出如下幾個反應(yīng)的K?表達式嗎?1.CaCO3(s)?CaO(s)+CO2(g)2.MnO2(s)+4H+(aq)+2Cl-(aq)?Mn2+(aq)+Cl2(g)

+2H2O(l)3.3Fe(s)+4H2O(l)?Fe3O4(s)+4H2(g)4.AgBr(s)?Ag(s)+Br2(l)12問題142▲▲▲問題2你能弄清、、之間的關(guān)系嗎?43根據(jù):ΔrGm

(T)=ΔrGm?

(T)+RTlnQ3.K?與ΔrGm?的關(guān)系:平衡時:ΔrGm

(T)=0,Q=K?于是:0=ΔrGm?

(T)+RTlnK?lnK?=-ΔrGm?

(T)RT意義:可直接從標(biāo)準(zhǔn)熱力學(xué)函數(shù)理論計算K?而不用從實驗測定K?444.多重平衡規(guī)則:①若反應(yīng)4=反應(yīng)1+反應(yīng)2+反應(yīng)3,則②若反應(yīng)4=反應(yīng)1+反應(yīng)2-反應(yīng)3,則③若反應(yīng)3=n反應(yīng)1-m反應(yīng)2,則K4

=K1?·K2?

·K3?

K4?

=(K1?

·K2?

)/K3?K3?

=(K1?)n/(K2?

)m

=(K1?)n·(K2?

)-m

45例4已知25℃時反應(yīng)(1)2BrCl(g)Cl2(g)+Br2(g)的

=0.45(2)I2(g)+Br2(g)2IBr(g)的

=0.051計算反應(yīng)(3)2ClBr(g)+I2(g)2IBr(g)+Cl2(g)的

解∵反應(yīng)(1)+反應(yīng)(2)=反應(yīng)(3)∴465.標(biāo)準(zhǔn)平衡常數(shù)的應(yīng)用a.判斷反應(yīng)的進行程度K?

愈大,反應(yīng)愈完全;K?

愈小,反應(yīng)愈不完全。若10-3

<K?

<103,反應(yīng)物部分地轉(zhuǎn)化為生成物b.預(yù)測反應(yīng)的進行方向aA(g)+bB(aq)+cC(s)?xX(g)+yY(aq)+zZ(l)判斷:Q

<K?

反應(yīng)正向進行;

Q>K?

反應(yīng)逆向進行

Q=K?

體系處于平衡狀態(tài)472.2.2化學(xué)平衡的有關(guān)計算1.從求K?

:或解題思路:①由Hess定律求出和;參見教材P45例2.548

反應(yīng)CO(g)+Cl2(g)COCl

2(g)在恒溫恒容條件下進行,已知373K時Kq=1.5108.反應(yīng)開始時,c0(CO)=0.0350mol·L-1,c0(Cl2)=0.0270mol·L-1,

c0(COCl2)=0.計算373K時反應(yīng)達到平衡時各物種的分壓和CO的平衡轉(zhuǎn)化率.2.計算平衡時各物種的組成

例5解1o設(shè)容器體積為1L,則根據(jù)PV=nRT可得:初始PCO=0.0350×8.314×373=108.5(kPa)初始PCl2=0.0270×8.314×373=83.7(kPa)49設(shè)平衡時Cl2的分壓為xkPa,依題意,有:

CO(g)+Cl2(g)COCl

2(g)開始cB/(mol·L-1)0.03500.02700開始pB/kPa108.583.70變化pB/kPa-(83.7-x)-(83.7-x)(83.7-x)平衡pB/kPa108.5-(83.7-x)x(83.7-x)=24.8+x50因為K?很大,x很小,所以83.7-x≈83.7,24.8+x≈24.8平衡時:

p(CO)=24.8kPa

p(Cl2)=2.310-6

kPa

p(COCl2)=83.7kPa2o某反應(yīng)物的轉(zhuǎn)化率α=513.反應(yīng)條件對反應(yīng)方向(ΔG)及限度K?的影響

對于反應(yīng):aA+bB=cC+dD

可見,p、c、T等對ΔrGm是有影響的。

平衡時ΔrGm

=0,Q=Kθ,∴可見,T對Kθ也是有影響的。

522.2.3化學(xué)平衡的移動

化學(xué)平衡的移動:當(dāng)外界條件改變時,化學(xué)反應(yīng)從一種平衡狀態(tài)轉(zhuǎn)變到另一種平衡狀態(tài)的過程。53如果改變平衡系統(tǒng)的條件之一(濃度、壓力和溫度),平衡就向能減弱這種改變的方向移動.

LeChatelier原理適用于處于平衡狀態(tài)的體系(含相平衡體系)。1848年,法國科學(xué)家LeChatelier

提出:化學(xué)平衡移動原理---LeChatelier

原理勒夏特列(LeChatelierH,1850-1936)法國無機化學(xué)家巴黎大學(xué)教授.541.濃度對化學(xué)平衡的影響當(dāng)c(反應(yīng)物)增大或c(生成物)減小時,Q<K?,

平衡向正向移動;(ΔrGm(T)<0)

當(dāng)c(反應(yīng)物)減小或c(生成物)增大時,Q>K?,

平衡向逆向移動。(ΔrGm(T)>0)

因ΔrGm(T)=ΔrGm?(T)+RTlnQ平衡時ΔrGm(T)=0,Q=K?于是ΔrGm?(T)=-

RTlnK?ΔrGm(T)=-

RTlnK?+RTlnQ

=RTln(Q/K?)552.壓強對化學(xué)平衡移動的影響如果保持T、V不變:p反應(yīng)物↗或p生應(yīng)物↘,則Q↘,Q<K?

,平衡正移.●部分物種分壓的變化p反應(yīng)物↘或p生應(yīng)物↗

,則Q↗,Q>K?

,平衡逆移.56●體積改變引起壓力的變化恒溫下壓縮為原體積的1/x(x>1)時對于有氣體參與的化學(xué)反應(yīng)

aA(g)+bB(g)yY(g)+zZ(g)平衡時1、若:ΣB>0,則

x

ΣB>1,Q>K?,平衡向逆向移動,即向氣體分子數(shù)減小的方向移動.573、若:ΣB=0,x

ΣB=1,Q=K?

,平衡不移動.▲在惰性氣體存在下達到平衡后,再恒溫壓縮,ΣB≠0,平衡向氣體分子數(shù)減小的方向移動,ΣB=0,平衡不移動.▲對恒溫恒容下已達到平衡的反應(yīng),引入惰性氣體,反應(yīng)物和生成物pB不變,Q=K?

,平衡不移動.▲對恒溫恒壓下已達到平衡的反應(yīng),引入惰性氣體,總壓不變,體積增大,反應(yīng)物和生成物分壓減小,如果Σ

B≠0,平衡向氣體分子數(shù)增大的方向移動.●惰性氣體的影響2、若:ΣB<0,x

ΣB<1,Q<K?

,平衡向正向移動,即向氣體分子數(shù)減小的方向移動.583.溫度對化學(xué)平衡移動的影響稱為范特霍夫等壓方程59在溫度變化不大時,即溫度變化不引起物質(zhì)的相態(tài)變化ln

Kq(T)與1/T呈直線關(guān)系兩式相減得:結(jié)論:對于吸熱反應(yīng),溫度升高,K?增大(正向移動);對于放熱反應(yīng),溫度升高,K?減小(逆向移動)。當(dāng)溫度為T1時當(dāng)溫度為T2時范特霍夫等壓方程60請?zhí)貏e注意!●催化劑不能使化學(xué)平衡發(fā)生移動催化劑使正、逆反應(yīng)的活化能減小相同的量,同等倍數(shù)增大正、逆反應(yīng)速率系數(shù),但不能改變標(biāo)準(zhǔn)平衡常數(shù),也不改變反應(yīng)商.催化劑只能縮短反應(yīng)達到平衡的時間,不能改變平衡組成.61Example625℃時,反應(yīng)Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)的K?=3.2.

●當(dāng)c(Ag+)=1.00×10-2mol·L-1,c(Fe2+)=0.100mol·L-1,c(Fe3+)=1.00×10-3

mol·L-1時反應(yīng)向哪一方向進行?●平衡時,Ag+,Fe2+,Fe3+的濃度各為多少?●Ag+的轉(zhuǎn)化率為多少?●如果保持Ag+,Fe3+的初始濃度不變,使c(Fe2+)增大至0.300mol·L-1,求Ag+的轉(zhuǎn)化率.62●先計算反應(yīng)商,判斷反應(yīng)方向結(jié)果:Q

<Kq,反應(yīng)正向進行Solution

Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)開始cB/(mol·L-1)0.1001.00×10-21.00×10-3變化cB/(mol·L-1)-x-xx平衡cB/(mol·L-1)0.100-x1.00×10-2-x1.00×10-3+x●計算平衡時各物種的組成63解之,x=0.0016

(mol·L-1)

平衡時:c(Ag+)=1.00×10-2-0.0016=0.0084(mol·L-1)

;

c(Fe2+)=0.100-0.0016=0.0984(mol·L-1);c(Fe3+)=1.00×10-3

+0.0016=0.0026(mol·L-1)。64●求Ag+的轉(zhuǎn)化率

●設(shè)達到新的平衡時Ag+的轉(zhuǎn)化率為α2

Fe2+(aq)+Ag+(aq)

Fe3+(aq)+Ag(s)轉(zhuǎn)化的量-0.01α2-0.01α2

0.01α2ceqB/(mol·L-1)0.300

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論