江蘇省昆山、太倉市2023學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析及點(diǎn)睛_第1頁
江蘇省昆山、太倉市2023學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析及點(diǎn)睛_第2頁
江蘇省昆山、太倉市2023學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析及點(diǎn)睛_第3頁
江蘇省昆山、太倉市2023學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析及點(diǎn)睛_第4頁
江蘇省昆山、太倉市2023學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析及點(diǎn)睛_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.若關(guān)于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..2.已知二次函數(shù)y=-x2-4x-5,左、右平移該拋物線,頂點(diǎn)恰好落在正比例函數(shù)y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-23.2017年底我國高速公路已開通里程數(shù)達(dá)13.5萬公里,居世界第一,將數(shù)據(jù)135000用科學(xué)計(jì)數(shù)法表示正確的是()A.1.35×106 B.1.35×105 C.13.5×104 D.135×1034.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個(gè)書簽上寫著一本書的名稱或一個(gè)作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機(jī)抽取兩張,則抽到的書簽正好是相對應(yīng)的書名和作者姓名的概率是()A. B. C. D.5.關(guān)于x的一元二次方程x2-2x-(m-1)=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.且 B. C.且 D.6.化簡:-,結(jié)果正確的是()A.1 B. C. D.7.在﹣3,﹣1,0,1四個(gè)數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.18.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數(shù)據(jù)35578用科學(xué)記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1059.A種飲料比B種飲料單價(jià)少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設(shè)B種飲料單價(jià)為x元/瓶,那么下面所列方程正確的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=1310.實(shí)數(shù)a、b在數(shù)軸上的對應(yīng)點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<011.如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.12.關(guān)于x的一元二次方程x2+3x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則A.m≤94B.m<94二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.在直角三角形ABC中,∠C=90°,已知sinA=3514.不等式組的最大整數(shù)解為_____.15.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長為________.16.在實(shí)數(shù)﹣2、0、﹣1、2、中,最小的是_______.17.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個(gè)圖案中陰影小三角形的個(gè)數(shù)是.18.若正六邊形的內(nèi)切圓半徑為2,則其外接圓半徑為__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知點(diǎn)A(﹣2,0),B(4,0),C(0,3),以D為頂點(diǎn)的拋物線y=ax2+bx+c過A,B,C三點(diǎn).(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)設(shè)拋物線的對稱軸DE交線段BC于點(diǎn)E,P為第一象限內(nèi)拋物線上一點(diǎn),過點(diǎn)P作x軸的垂線,交線段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo).20.(6分)計(jì)算:|﹣1|+(﹣1)2018﹣tan60°21.(6分)解方程:x2-4x-5=022.(8分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過點(diǎn)D作⊙O的切線交CB的延長線于點(diǎn)E,交AC于點(diǎn)F.(1)求證:點(diǎn)F是AC的中點(diǎn);(2)若∠A=30°,AF=,求圖中陰影部分的面積.23.(8分)某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為,圖①中m的值為;求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).24.(10分)為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.25.(10分)如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長線交于點(diǎn)F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關(guān)系,并說明理由.26.(12分)如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣1x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)A,過點(diǎn)C作CB⊥y軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.(1)線段AB,BC,AC的長分別為AB=,BC=,AC=;(1)折疊圖1中的△ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開,折痕DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖1.請從下列A、B兩題中任選一題作答,我選擇題.A:①求線段AD的長;②在y軸上,是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.B:①求線段DE的長;②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.27.(12分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng),已知點(diǎn)F的移動(dòng)速度是點(diǎn)E移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動(dòng)距離為x(0<x<6).(1)∠DCB=度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時(shí),x=;(2)在點(diǎn)E,F(xiàn)的移動(dòng)過程中,點(diǎn)G始終在BD或BD的延長線上運(yùn)動(dòng),求點(diǎn)G在線段BD的中點(diǎn)時(shí)x的值;(3)當(dāng)2<x<6時(shí),求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),y有最大值?并求出y的最大值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.【點(diǎn)睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.2、D【解析】

把這個(gè)二次函數(shù)的圖象左、右平移,頂點(diǎn)恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點(diǎn)的橫縱坐標(biāo)互為相反數(shù),而平移時(shí),頂點(diǎn)的縱坐標(biāo)不變,即可求得函數(shù)解析式.【詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點(diǎn)坐標(biāo)是(﹣1,﹣1).由題知:把這個(gè)二次函數(shù)的圖象左、右平移,頂點(diǎn)恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點(diǎn)的橫縱坐標(biāo)互為相反數(shù).∵左、右平移時(shí),頂點(diǎn)的縱坐標(biāo)不變,∴平移后的頂點(diǎn)坐標(biāo)為(1,﹣1),∴函數(shù)解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時(shí),點(diǎn)的橫坐標(biāo)不變;左右平移時(shí),點(diǎn)的縱坐標(biāo)不變.同時(shí)考查了二次函數(shù)的性質(zhì),正比例函數(shù)y=﹣x的圖象上點(diǎn)的坐標(biāo)特征.3、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】解:135000=1.35×105故選B.【點(diǎn)睛】此題考查科學(xué)記數(shù)法表示較大的數(shù).科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.4、D【解析】

根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應(yīng)的書名和作者姓名的概率是=;故選D.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、A【解析】

根據(jù)一元二次方程的系數(shù)結(jié)合根的判別式△>1,即可得出關(guān)于m的一元一次不等式,解之即可得出實(shí)數(shù)m的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個(gè)不相等的實(shí)數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【點(diǎn)睛】本題考查了根的判別式,牢記“當(dāng)△>1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.6、B【解析】

先將分母進(jìn)行通分,化為(x+y)(x-y)的形式,分子乘上相應(yīng)的分式,進(jìn)行化簡.【詳解】【點(diǎn)睛】本題考查的是分式的混合運(yùn)算,解題的關(guān)鍵就是熟練掌握運(yùn)算規(guī)則.7、A【解析】

因?yàn)檎龜?shù)是比0大的數(shù),負(fù)數(shù)是比0小的數(shù),正數(shù)比負(fù)數(shù)大;負(fù)數(shù)的絕對值越大,本身就越小,根據(jù)有理數(shù)比較大小的法則即可選出答案.【詳解】因?yàn)檎龜?shù)是比0大的數(shù),負(fù)數(shù)是比0小的數(shù),正數(shù)比負(fù)數(shù)大;負(fù)數(shù)的絕對值越大,本身就越小,所以在-3,-1,0,1這四個(gè)數(shù)中比-2小的數(shù)是-3,故選A.【點(diǎn)睛】本題主要考查有理數(shù)比較大小,解決本題的關(guān)鍵是要熟練掌握比較有理數(shù)大小的方法.8、B【解析】

科學(xué)計(jì)數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.【點(diǎn)睛】本題主要考查的是利用科學(xué)計(jì)數(shù)法表示較大的數(shù),屬于基礎(chǔ)題型.理解科學(xué)計(jì)數(shù)法的表示方法是解題的關(guān)鍵.9、A【解析】

要列方程,首先要根據(jù)題意找出題中存在的等量關(guān)系,由題意可得到:買A飲料的錢+買B飲料的錢=總印數(shù)1元,明確了等量關(guān)系再列方程就不那么難了.【詳解】設(shè)B種飲料單價(jià)為x元/瓶,則A種飲料單價(jià)為(x-1)元/瓶,根據(jù)小峰買了2瓶A種飲料和3瓶B種飲料,一共花了1元,可得方程為:2(x-1)+3x=1.故選A.【點(diǎn)睛】列方程題的關(guān)鍵是找出題中存在的等量關(guān)系,此題的等量關(guān)系為買A中飲料的錢+買B中飲料的錢=一共花的錢1元.10、C【解析】

直接利用a,b在數(shù)軸上的位置,進(jìn)而分別對各個(gè)選項(xiàng)進(jìn)行分析得出答案.【詳解】選項(xiàng)A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項(xiàng)A不合題意;選項(xiàng)B,從數(shù)軸上看出,a在原點(diǎn)左側(cè),b在原點(diǎn)右側(cè),∴a<0,b>0,∴ab<0,故選項(xiàng)B不合題意;選項(xiàng)C,從數(shù)軸上看出,a在b的左側(cè),∴a<b,即a﹣b<0,故選項(xiàng)C符合題意;選項(xiàng)D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項(xiàng)D不合題意.故選:C.【點(diǎn)睛】本題考查數(shù)軸和有理數(shù)的四則運(yùn)算,解題的關(guān)鍵是掌握利用數(shù)軸表示有理數(shù)的大小.11、C【解析】

設(shè)B′C′與CD的交點(diǎn)為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計(jì)算即可得解.【詳解】如圖,設(shè)B′C′與CD的交點(diǎn)為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點(diǎn).12、B【解析】試題分析:根據(jù)題意得△=32﹣4m>0,解得m<94故選B.考點(diǎn):根的判別式.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、35【解析】試題分析:解答此題要利用互余角的三角函數(shù)間的關(guān)系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點(diǎn):互余兩角三角函數(shù)的關(guān)系.14、﹣1.【解析】

分別求出每一個(gè)不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,從而得出其最大整數(shù)解.【詳解】,解不等式①得:x≤1,解不等式②得x-1>1x,x-1x>1,-x>1,x<-1,∴

不等式組的解集為x<-1,∴

不等式組的最大整數(shù)解為-1.故答案為-1.【點(diǎn)睛】本題考查了一元一次不等式組的整數(shù)解,解題的關(guān)鍵是熟練的掌握一元一次不等式組的整數(shù)解.15、【解析】試題分析:因?yàn)镺C=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點(diǎn):1.解直角三角形、2.垂徑定理.16、﹣1.【解析】

解:在實(shí)數(shù)﹣1、0、﹣1、1、中,最小的是﹣1,故答案為﹣1.【點(diǎn)睛】本題考查實(shí)數(shù)大小比較.17、4n﹣1.【解析】由圖可知:第一個(gè)圖案有陰影小三角形1個(gè),第二圖案有陰影小三角形1+4=6個(gè),第三個(gè)圖案有陰影小三角形1+8=11個(gè),···那么第n個(gè)就有陰影小三角形1+4(n﹣1)=4n﹣1個(gè).18、【解析】

根據(jù)題意畫出草圖,可得OG=2,,因此利用三角函數(shù)便可計(jì)算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內(nèi)切圓半徑為2,則其外接圓半徑為.故答案為.【點(diǎn)睛】本題主要考查多邊形的內(nèi)接圓和外接圓,關(guān)鍵在于根據(jù)題意畫出草圖,再根據(jù)三角函數(shù)求解,這是多邊形問題的解題思路.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣38x2+34x+3;D(1,278【解析】

(1)設(shè)拋物線的解析式為y=a(x+2)(x-4),將點(diǎn)C(0,3)代入可求得a的值,將a的值代入可求得拋物線的解析式,配方可得頂點(diǎn)D的坐標(biāo);(2)畫圖,先根據(jù)點(diǎn)B和C的坐標(biāo)確定直線BC的解析式,設(shè)P(m,-38m2+34m+3),則F(m,-【詳解】解:(1)設(shè)拋物線的解析式為y=a(x+2)(x﹣4),將點(diǎn)C(0,3)代入得:﹣8a=3,解得:a=﹣38y=﹣38x2+34x+3=﹣38(x﹣1)2∴拋物線的解析式為y=﹣38x2+34x+3,且頂點(diǎn)D(1,(2)∵B(4,0),C(0,3),∴BC的解析式為:y=﹣34∵D(1,278當(dāng)x=1時(shí),y=﹣34+3=9∴E(1,94∴DE=278-94=9設(shè)P(m,﹣38m2+34m+3),則F(m,﹣∵四邊形DEFP是平行四邊形,且DE∥FP,∴DE=FP,即(﹣38m2+34m+3)﹣(﹣34解得:m1=1(舍),m2=3,∴P(3,158【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式,利用方程思想列等式求點(diǎn)的坐標(biāo),難度適中.20、1【解析】

原式利用絕對值的代數(shù)意義,乘方的意義,以及特殊角的三角函數(shù)值計(jì)算即可求出值.【詳解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,涉及了絕對值化簡、特殊角的三角函數(shù)值,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.21、x1="-1,"x2=5【解析】根據(jù)十字相乘法因式分解解方程即可.22、(1)見解析;(2)【解析】

(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據(jù)切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關(guān)系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據(jù)切線的性質(zhì)得到OD⊥EF,從而可計(jì)算出DE的長,然后根據(jù)扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進(jìn)行計(jì)算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點(diǎn)F是AC中點(diǎn);(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡記作:見切點(diǎn),連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.23、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解析】

(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計(jì)圖中給出的信息,結(jié)合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計(jì)圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關(guān)鍵.24、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.25、(1)見解析;(1)見解析.【解析】

(1)由全等三角形的判定定理AAS證得結(jié)論.(1)由(1)中全等三角形的對應(yīng)邊相等推知點(diǎn)E是邊DF的中點(diǎn),∠1=∠1;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點(diǎn)F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點(diǎn)E是AB邊的中點(diǎn),∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點(diǎn)E是DF的中點(diǎn),∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.26、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).【解析】

(1)先確定出OA=3,OC=2,進(jìn)而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A.①利用折疊的性質(zhì)得出BD=2﹣AD,最后用勾股定理即可得出結(jié)論;②分三種情況利用方程的思想即可得出結(jié)論;B.①利用折疊的性質(zhì)得出AE,利用勾股定理即可得出結(jié)論;②先判斷出∠APC=90°,再分情況討論計(jì)算即可.【詳解】解:(1)∵一次函數(shù)y=﹣1x+2的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,∴A(3,0),C(0,2),∴OA=3,OC=2.∵AB⊥x軸,CB⊥y軸,∠AOC=90°,∴四邊形OABC是矩形,∴AB=OC=2,BC=OA=3.在Rt△ABC中,根據(jù)勾股定理得,AC==3.故答案為2,3,3;(1)選A.①由(1)知,BC=3,AB=2,由折疊知,CD=AD.在Rt△BCD中,BD=AB﹣AD=2﹣AD,根據(jù)勾股定理得,CD1=BC1+BD1,即:AD1=16+(2﹣AD)1,∴AD=5;②由①知,D(3,5),設(shè)P(0,y).∵A(3,0),∴AP1=16+y1,DP1=16+(y﹣5)1.∵△APD為等腰三角形,∴分三種情況討論:Ⅰ、AP=AD,∴16+y1=15,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,∴16+y1=16+(y﹣5)1,∴y=,∴P(0,);Ⅲ、AD=DP,15=16+(y﹣5)1,∴y=1或2,∴P(0,1)或(0,2).綜上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).選B.①由A①知,AD=5,由折疊知,AE=AC=1,DE⊥AC于E.在Rt△ADE中,DE==;②∵以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°.∵四邊形OABC是矩形,∴△ACO≌△CAB,此時(shí),符合條件,點(diǎn)P和點(diǎn)O重合,即:P(0,0);如圖3,過點(diǎn)O作ON⊥AC于N,易證,△AON∽△ACO,∴,∴,∴AN=,過點(diǎn)N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(),而點(diǎn)P1與點(diǎn)O關(guān)于AC對稱,∴P1(),同理:點(diǎn)B關(guān)于AC的對稱點(diǎn)P1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論