下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為()A. B. C. D.2.已知函數(shù),滿足對(duì)任意的實(shí)數(shù),都有成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.14.以,為直徑的圓的方程是A. B.C. D.5.已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為()A. B. C. D.6.已知點(diǎn),若點(diǎn)在曲線上運(yùn)動(dòng),則面積的最小值為()A.6 B.3 C. D.7.若的展開(kāi)式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.8.已知雙曲線(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60°的直線l與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.9.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.210.已知函數(shù),以下結(jié)論正確的個(gè)數(shù)為()①當(dāng)時(shí),函數(shù)的圖象的對(duì)稱中心為;②當(dāng)時(shí),函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時(shí),在上的最大值為1.A.1 B.2 C.3 D.411.已知正方體的棱長(zhǎng)為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.12.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在處的切線與直線互相垂直,則_____.14.在一次醫(yī)療救助活動(dòng)中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調(diào)3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有________種.(用數(shù)字作答)15.從2、3、5、7、11、13這六個(gè)質(zhì)數(shù)中任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)16.展開(kāi)式的第5項(xiàng)的系數(shù)為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.18.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且是與的等差中項(xiàng).(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最小正整數(shù)的值.19.(12分)已知在平面四邊形中,的面積為.(1)求的長(zhǎng);(2)已知,為銳角,求.20.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(21.(12分)的內(nèi)角,,的對(duì)邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長(zhǎng).22.(10分)某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開(kāi)學(xué)季利潤(rùn)不少于4800元的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.2.B【解析】
由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實(shí)數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實(shí)數(shù)的取值范圍是.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時(shí)還要考慮分段點(diǎn)處函數(shù)值的大小關(guān)系,考查運(yùn)算求解能力,屬于中等題.3.B【解析】
,選B.4.A【解析】
設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡(jiǎn)整理得,所以本題答案為A.【點(diǎn)睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.5.D【解析】
列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個(gè),滿足條件的有7個(gè),相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個(gè),滿足的整數(shù)點(diǎn)有7個(gè),則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.6.B【解析】
求得直線的方程,畫(huà)出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點(diǎn)為圓心,1為半徑的下半圓(包括兩個(gè)端點(diǎn)),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時(shí),到直線距離最短,即為,則的面積的最小值為.故選:B.【點(diǎn)睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點(diǎn)到直線距離的最小值,這由數(shù)形結(jié)合思想易得.7.C【解析】展開(kāi)式的通項(xiàng)為,因?yàn)檎归_(kāi)式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).8.A【解析】
若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點(diǎn)為,若過(guò)點(diǎn)且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率,,離心率,,故選:.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.9.D【解析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡(jiǎn)可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.10.C【解析】
逐一分析選項(xiàng),①根據(jù)函數(shù)的對(duì)稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點(diǎn)必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對(duì)稱中心為原點(diǎn),根據(jù)平移知識(shí),函數(shù)的圖象的對(duì)稱中心為,正確.②由題意知.因?yàn)楫?dāng)時(shí),,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時(shí),,此時(shí)在上為增函數(shù),不合題意,故.令,解得.因?yàn)樵谏喜粏握{(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因?yàn)?,,所以最大值?4,結(jié)論錯(cuò)誤.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.11.A【解析】
根據(jù)球的特點(diǎn)可知截面是一個(gè)圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長(zhǎng)的一半,所以球的半徑為,又因?yàn)?,所以,又因?yàn)?,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個(gè)平面去截球,得到的截面一定是圓面,截面圓的半徑可通過(guò)球的半徑以及球心到截面的距離去計(jì)算.12.A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點(diǎn):全稱命題.二、填空題:本題共4小題,每小題5分,共20分。13.1.【解析】
求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進(jìn)行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:【點(diǎn)睛】本題主要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.14.【解析】
首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調(diào)2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為.【點(diǎn)睛】解排列組合問(wèn)題要遵循兩個(gè)原則:一是按元素(或位置)的性質(zhì)進(jìn)行分類;二是按事情發(fā)生的過(guò)程進(jìn)行分步.具體地說(shuō),解排列組合問(wèn)題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).15.【解析】
依據(jù)古典概型的計(jì)算公式,分別求“任取兩個(gè)數(shù)”和“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件數(shù),計(jì)算即可。【詳解】“任取兩個(gè)數(shù)”的事件數(shù)為,“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個(gè),所以任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是?!军c(diǎn)睛】本題主要考查古典概型的概率求法。16.70【解析】
根據(jù)二項(xiàng)式定理的通項(xiàng)公式,可得結(jié)果.【詳解】由題可知:第5項(xiàng)為故第5項(xiàng)的的系數(shù)為故答案為:70.【點(diǎn)睛】本題考查的是二項(xiàng)式定理,屬基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)當(dāng)時(shí),沒(méi)有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)【解析】試題分析:(1),分,討論,當(dāng)時(shí),對(duì),,當(dāng)時(shí),解得,在上是減函數(shù),在上是增函數(shù)。所以,當(dāng)時(shí),沒(méi)有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內(nèi)有解。設(shè),所以,設(shè),則,且是增函數(shù),所以。所以分和k>1討論。試題解析:(Ⅰ)因?yàn)?,所以,?dāng)時(shí),對(duì),,所以在是減函數(shù),此時(shí)函數(shù)不存在極值,所以函數(shù)沒(méi)有極值點(diǎn);當(dāng)時(shí),,令,解得,若,則,所以在上是減函數(shù),若,則,所以在上是增函數(shù),當(dāng)時(shí),取得極小值為,函數(shù)有且僅有一個(gè)極小值點(diǎn),所以當(dāng)時(shí),沒(méi)有極值點(diǎn),當(dāng)時(shí),有一個(gè)極小值點(diǎn).(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內(nèi)有解.若,則設(shè),所以,設(shè),則,且是增函數(shù),所以當(dāng)時(shí),,所以在上是增函數(shù),,即,所以在上是增函數(shù),所以,即在上恒成立.當(dāng)時(shí),因?yàn)樵谑窃龊瘮?shù),因?yàn)?,,所以在上存在唯一零點(diǎn),當(dāng)時(shí),,在上單調(diào)遞減,從而,即,所以在上單調(diào)遞減,所以當(dāng)時(shí),,即.所以不等式在區(qū)間內(nèi)有解綜上所述,實(shí)數(shù)的取值范圍為.18.(1)見(jiàn)解析,(2)最小正整數(shù)的值為35.【解析】
(1)由等差中項(xiàng)可知,當(dāng)時(shí),得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進(jìn)而求出最小值.【詳解】解析:(1)由題意可得,當(dāng)時(shí),,∴,,當(dāng)時(shí),,整理可得,∴是首項(xiàng)為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.【點(diǎn)睛】本題考查了等差中項(xiàng),考查了等差數(shù)列的定義,考查了與的關(guān)系,考查了裂項(xiàng)相消求和.當(dāng)已知有與的遞推關(guān)系時(shí),常代入進(jìn)行整理.證明數(shù)列是等差數(shù)列時(shí),一般借助數(shù)列,即后一項(xiàng)與前一項(xiàng)的差為常數(shù).19.(1);(2)4.【解析】
(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進(jìn)而求得,利用同角三角函數(shù)的基本關(guān)系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.20.(I)π;(II)-【解析】
(I)化簡(jiǎn)得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點(diǎn)睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21.(1)(2)【解析】
(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問(wèn)題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗(yàn)符合題意,三角形的周長(zhǎng).(實(shí)際上可解得,符合三邊關(guān)系).【點(diǎn)睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運(yùn)算能力,考查了轉(zhuǎn)化思想,屬于中檔題.22.(1),眾數(shù)為150;(2);(3)【解析】
(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南省信陽(yáng)市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)統(tǒng)編版課后作業(yè)((上下)學(xué)期)試卷及答案
- 2024年《高等數(shù)學(xué)2》教案設(shè)計(jì):案例分析與啟示
- 2024年20加減法課件:提升教學(xué)效果的策略
- 2024年人力資源管理創(chuàng)新思維教案
- 2024年《條據(jù)》公開(kāi)課教案:提升學(xué)生學(xué)習(xí)能力
- 2024年市場(chǎng)營(yíng)銷學(xué)課件:創(chuàng)新與趨勢(shì)
- 河南省南陽(yáng)市2024-2025學(xué)年高三上學(xué)期11月期中考試 語(yǔ)文 含答案
- 2024年教案:深度解析20以內(nèi)加減法的教學(xué)方法與技巧
- 2024保護(hù)環(huán)境人人有責(zé)主題演講稿(31篇)
- 2024年《剪窗花》教學(xué)課件
- 校企共建項(xiàng)目合同違約條款
- GB/T 16716.5-2024包裝與環(huán)境第5部分:能量回收
- 中小學(xué)教師如何做課題研究設(shè)計(jì)課件
- 《1.6.1 余弦定理》說(shuō)課稿
- 急診醫(yī)學(xué)測(cè)試試題及答案
- 2024年廣州鐵路(集團(tuán))公司招聘468人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年消防月全員消防安全知識(shí)專題培訓(xùn)-附20起典型火災(zāi)案例
- 恒牙臨床解剖-上頜中切牙(牙體解剖學(xué)課件)
- 戲劇鑒賞學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- NBT 31021-2012風(fēng)力發(fā)電企業(yè)科技文件規(guī)檔規(guī)范
- 2024年國(guó)家公務(wù)員考試行測(cè)真題及解析(完整版)
評(píng)論
0/150
提交評(píng)論