2023屆甘肅省示范名校高考仿真卷數(shù)學(xué)試卷含解析_第1頁
2023屆甘肅省示范名校高考仿真卷數(shù)學(xué)試卷含解析_第2頁
2023屆甘肅省示范名校高考仿真卷數(shù)學(xué)試卷含解析_第3頁
2023屆甘肅省示范名校高考仿真卷數(shù)學(xué)試卷含解析_第4頁
2023屆甘肅省示范名校高考仿真卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為純虛數(shù),則z=()A. B.6i C. D.202.設(shè)函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,3.根據(jù)如圖所示的程序框圖,當(dāng)輸入的值為3時,輸出的值等于()A.1 B. C. D.4.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.95.函數(shù)的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.6.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.7.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.8.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.49.用數(shù)學(xué)歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+110.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側(cè)棱長為,則它的外接球的表面積為()A. B. C. D.11.已知實數(shù),則的大小關(guān)系是()A. B. C. D.12.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是__________.14.點P是△ABC所在平面內(nèi)一點且在△ABC內(nèi)任取一點,則此點取自△PBC內(nèi)的概率是____15.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實數(shù)等于______.16.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.18.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風(fēng)雨歷程,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機(jī)選取3人進(jìn)行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時,求的值.19.(12分)已知,(其中).(1)求;(2)求證:當(dāng)時,.20.(12分)某企業(yè)質(zhì)量檢驗員為了檢測生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機(jī)抽取了個零件進(jìn)行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結(jié)果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機(jī)抽取個,設(shè)表示尺寸在上的零件個數(shù),求的分布列及數(shù)學(xué)期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現(xiàn)對生產(chǎn)線上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱個.企業(yè)在交付買家之前需要決策是否對每箱的所有零件進(jìn)行檢驗,已知每個零件的檢驗費(fèi)用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進(jìn)入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費(fèi)用.現(xiàn)對一箱零件隨機(jī)抽檢了個,結(jié)果有個二等品,以整箱檢驗費(fèi)用與賠償費(fèi)用之和的期望值作為決策依據(jù),該企業(yè)是否對該箱余下的所有零件進(jìn)行檢驗?請說明理由.21.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時,求平面與平面所成的二面角的余弦值.22.(10分)已知,,不等式恒成立.(1)求證:(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.2、D【解析】

根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.3、C【解析】

根據(jù)程序圖,當(dāng)x<0時結(jié)束對x的計算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時x>0繼續(xù)運(yùn)行,x=1-2=-1<0,程序運(yùn)行結(jié)束,得,故選C.【點睛】本題考查程序框圖,是基礎(chǔ)題.4、A【解析】

由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因為,,由題可知:時,則,所以,所以,當(dāng)無限接近時,滿足條件,所以,所以要使得故當(dāng)時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運(yùn)用構(gòu)造函數(shù)法和放縮法,同時考查轉(zhuǎn)化思想和解題能力.5、A【解析】

求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.6、A【解析】

由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點睛】本題主要考查由三視圖求面積、體積,關(guān)鍵是由三視圖還原原幾何體,意在考查學(xué)生對這些知識的理解掌握水平.7、D【解析】

根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,最小值為.故選:D.【點睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.8、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時取等號,故選:.【點睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.9、C【解析】

首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+…+n1=n4【詳解】當(dāng)n=k時,等式左端=1+1+…+k1,當(dāng)n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./10、C【解析】

如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設(shè)球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設(shè)球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學(xué)生的空間想象能力和計算能力.11、B【解析】

根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.12、D【解析】

利用等差數(shù)列的通項公式可得,再利用等差數(shù)列的前項和公式即可求解.【詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數(shù)列的通項公式、等差數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.14、【解析】

設(shè)是中點,根據(jù)已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結(jié)合幾何概型求得點取自三角形的概率.【詳解】設(shè)是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內(nèi)的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎(chǔ)題.15、【解析】

作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.16、1【解析】

令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解析】

(1)連接,設(shè),可證得四邊形為平行四邊形,由此得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以為原點建立空間直角坐標(biāo)系,利用二面角的空間向量求法可求得結(jié)果.【詳解】(1)連接,設(shè),連接,在四棱柱中,分別為的中點,,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點,所在直線分別為軸建立空間直角坐標(biāo)系.設(shè),四邊形為正方形,,,則,,,,,,,設(shè)為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面平行關(guān)系的證明、空間向量法求解二面角的問題;關(guān)鍵是能夠熟練掌握二面角的向量求法,易錯點是求得法向量夾角余弦值后,未根據(jù)圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號出現(xiàn)錯誤.18、(1)分布列見解析,(1)【解析】

(1)根據(jù)頻率分布直方圖及抽取總?cè)藬?shù),結(jié)合各組頻率值即可求得各組抽取的人數(shù);的可能取值為0,1,1,由離散型隨機(jī)變量概率求法即可求得各概率值,即可得分布列;由數(shù)學(xué)期望公式即可求得其數(shù)學(xué)期望.(1)先求得年齡在內(nèi)的頻率,視為概率.結(jié)合二項分布的性質(zhì),表示出,令,化簡后可證明其單調(diào)性及取得最大值時的值.【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數(shù)為人,年齡在內(nèi)的人數(shù)為人.年齡在內(nèi)的人數(shù)為人.所以的可能取值為0,1,1.所以,,,所以的分市列為011.(1)設(shè)在抽取的10名市民中,年齡在內(nèi)的人數(shù)為,服從二項分布.由頻率分布直方圖可知,年齡在內(nèi)的頻率為,所以,所以.設(shè),若,則,;若,則,.所以當(dāng)時,最大,即當(dāng)最大時,.【點睛】本題考差了離散型隨機(jī)變量分布列及數(shù)學(xué)期望的求法,二項分布的綜合應(yīng)用,屬于中檔題.19、(1)(2)見解析【解析】

(1)取,則;取,則,∴;(2)要證,只需證,當(dāng)時,;假設(shè)當(dāng)時,結(jié)論成立,即,兩邊同乘以3得:而∴,即時結(jié)論也成立,∴當(dāng)時,成立.綜上原不等式獲證.20、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】

(1)計算的頻率,并且與進(jìn)行比較,判斷中位數(shù)落在的區(qū)間,然后根據(jù)頻率的計算方法,可得結(jié)果.(2)計算位于之外的零件中隨機(jī)抽取個的總數(shù),寫出所有可能取值,并計算相對應(yīng)的概率,列出分布列,計算期望,可得結(jié)果.(3)計算整箱的費(fèi)用,根據(jù)余下零件個數(shù)服從二項分布,可得余下零件個數(shù)的期望值,然后計算整箱檢驗費(fèi)用與賠償費(fèi)用之和的期望值,進(jìn)行比較,可得結(jié)果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數(shù)落在假設(shè)尺寸中位數(shù)為所以所以這個零件尺寸的中位數(shù)(2)尺寸在的個數(shù)為尺寸在的個數(shù)為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對余下的零件進(jìn)行檢驗則整箱的檢驗費(fèi)用為(元)余下二等品的個數(shù)期望值為如果不對余下的零件進(jìn)行檢驗,整箱檢驗費(fèi)用與賠償費(fèi)用之和的期望值為(元)所以,所以可以不對余下的零件進(jìn)行檢驗.【點睛】本題考查頻率分布直方圖的應(yīng)用,掌握中位數(shù),平均數(shù),眾數(shù)的計算方法,中位數(shù)的理解應(yīng)該從中位數(shù)開始左右兩邊的頻率各為0.5,考驗分析能力以及數(shù)據(jù)處理,屬中檔題.21、(1)見解析;(2)【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論