版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應值,可判斷該二次函數(shù)的圖象與軸().
…
…
…
…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側C.有兩個交點,且它們均在軸同側 D.無交點2.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.3.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當點P在BC上從點B向點C移動,而點R不動時,下列結論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關4.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.15.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐6.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點M、N,BA、DC的延長線交于點P,聯(lián)結OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數(shù)是()A.1 B.2 C.3 D.47.在實數(shù)0,-π,,-4中,最小的數(shù)是()A.0 B.-π C. D.-48.根據(jù)中國鐵路總公司3月13日披露,2018年鐵路春運自2月1日起至3月12日止,為期40天全國鐵路累計發(fā)送旅客3.82億人次.3.82億用科學記數(shù)法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10109.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<010.小文同學統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法:①這棟居民樓共有居民140人②每周使用手機支付次數(shù)為28~35次的人數(shù)最多③有的人每周使用手機支付的次數(shù)在35~42次④每周使用手機支付不超過21次的有15人其中正確的是()A.①② B.②③ C.③④ D.④11.不等式組的解集在數(shù)軸上表示為()A. B. C. D.12.⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則n的值為()A.3 B.4 C.6 D.8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.14.完全相同的3個小球上面分別標有數(shù)-2、-1、1,將其放入一個不透明的盒子中后搖勻,再從中隨機摸球兩次(第一次摸出球后放回搖勻),兩次摸到的球上數(shù)之和是負數(shù)的概率是________.15.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.16.直線y=x與雙曲線y=在第一象限的交點為(a,1),則k=_____.17.如圖,矩形紙片ABCD中,AB=3,AD=5,點P是邊BC上的動點,現(xiàn)將紙片折疊使點A與點P重合,折痕與矩形邊的交點分別為E,F(xiàn),要使折痕始終與邊AB,AD有交點,BP的取值范圍是_____.18.將一副直角三角板如圖放置,使含30°角的三角板的短直角邊和含45°角的三角板的一條直角邊重合,則∠1的度數(shù)為__度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(6分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當PO+PC的值最小時,求點P的坐標;(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.21.(6分)先化簡,再求值:,其中.22.(8分)在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.求每臺電腦、每臺電子白板各多少萬元?根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.23.(8分)如圖,一只螞蟻從點A沿數(shù)軸向右直爬2個單位到達點B,點A表示﹣,設點B所表示的數(shù)為m.求m的值;求|m﹣1|+(m+6)0的值.24.(10分)為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績?yōu)椋ǚ郑?,且,將其按分?shù)段分為五組,繪制出以下不完整表格:組別
成績(分)
頻數(shù)(人數(shù))
頻率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
請根據(jù)表格提供的信息,解答以下問題:本次決賽共有名學生參加;直接寫出表中a=,b=;請補全下面相應的頻數(shù)分布直方圖;若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為.25.(10分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(取)運動員乙要搶到第二個落點,他應再向前跑多少米?26.(12分)(操作發(fā)現(xiàn))(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于30°),旋轉后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.①求∠EAF的度數(shù);②DE與EF相等嗎?請說明理由;(類比探究)(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于45°),旋轉后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.請直接寫出探究結果:①∠EAF的度數(shù);②線段AE,ED,DB之間的數(shù)量關系.27.(12分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側故選B.【點睛】本題考查二次函數(shù)的性質,屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.2、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.3、C【解析】試題分析:連接AR,根據(jù)勾股定理得出AR=的長不變,根據(jù)三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質,2、勾股定理,3、三角形的中位線4、A【解析】
過O作OC⊥AB于C,過N作ND⊥OA于D,設N的坐標是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設N的坐標是(x,34則DN=34y=34當x=0時,y=3,當y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學生運用這些性質進行計算的能力,題目比較典型,綜合性比較強.5、C【解析】分析:根據(jù)一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.6、D【解析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.7、D【解析】
根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】∵正數(shù)大于0和一切負數(shù),∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數(shù)是-1.故選D.【點睛】此題主要考查了實數(shù)的大小的比較,注意兩個無理數(shù)的比較方法:統(tǒng)一根據(jù)二次根式的性質,把根號外的移到根號內(nèi),只需比較被開方數(shù)的大?。?、B【解析】
根據(jù)題目中的數(shù)據(jù)可以用科學記數(shù)法表示出來,本題得以解決.【詳解】解:3.82億=3.82×108,故選B.【點睛】本題考查科學記數(shù)法-表示較大的數(shù),解答本題的關鍵是明確科學記數(shù)法的表示方法.9、D【解析】
由二次函數(shù)的解析式可知,當x=1時,所對應的函數(shù)值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點在第三象限,且經(jīng)過點(1,0)∴該函數(shù)是開口向上的,a>0
∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【點睛】本題考查大小二次函數(shù)的圖像,熟練掌握圖像的性質是解題的關鍵.10、B【解析】
根據(jù)直方圖表示的意義求得統(tǒng)計的總人數(shù),以及每組的人數(shù)即可判斷.本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解.【詳解】解:①這棟居民樓共有居民3+10+15+22+30+25+20=125人,此結論錯誤;②每周使用手機支付次數(shù)為28~35次的人數(shù)最多,此結論正確;③每周使用手機支付的次數(shù)在35~42次所占比例為,此結論正確;④每周使用手機支付不超過21次的有3+10+15=28人,此結論錯誤;故選:B.【點睛】此題考查直方圖的意義,解題的關鍵在于理解直方圖表示的意義求得統(tǒng)計的數(shù)據(jù)11、A【解析】
根據(jù)不等式組的解集在數(shù)軸上表示的方法即可解答.【詳解】∵x≥﹣2,故以﹣2為實心端點向右畫,x<1,故以1為空心端點向左畫.故選A.【點睛】本題考查了不等式組解集的在數(shù)軸上的表示方法,不等式的解集在數(shù)軸上表示方法為:>、≥向右畫,<、≤向左畫,“≤”、“≥”要用實心圓點表示;“<”、“>”要用空心圓點表示.12、C【解析】
根據(jù)題意可以求出這個正n邊形的中心角是60°,即可求出邊數(shù).【詳解】⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則這個正n邊形的中心角是60°,n的值為6,故選:C【點睛】考查正多邊形和圓,求出這個正多邊形的中心角度數(shù)是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、50【解析】試題分析:連結EF,如圖,根據(jù)圓內(nèi)接四邊形的性質得∠A+∠BCD=180°,根據(jù)對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結EF,如圖,∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點:圓內(nèi)接四邊形的性質.14、【解析】
畫樹狀圖列出所有等可能結果,從中找到能兩次摸到的球上數(shù)之和是負數(shù)的結果,根據(jù)概率公式計算可得.【詳解】解:畫樹狀圖如下:由樹狀圖可知共有9種等可能結果,其中兩次摸到的球上數(shù)之和是負數(shù)的有6種結果,所以兩次摸到的球上數(shù)之和是負數(shù)的概率為,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、【解析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.16、1【解析】分析:首先根據(jù)正比例函數(shù)得出a的值,然后將交點坐標代入反比例函數(shù)解析式得出k的值.詳解:將(a,1)代入正比例函數(shù)可得:a=1,∴交點坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是利用待定系數(shù)法求函數(shù)解析式,屬于基礎題型.根據(jù)正比例函數(shù)得出交點坐標是解題的關鍵.17、1≤x≤1【解析】
此題需要運用極端原理求解;①BP最小時,F(xiàn)、D重合,由折疊的性質知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據(jù)折疊的性質即可得到AB=BP=1,即BP的最大值為1;【詳解】解:如圖:①當F、D重合時,BP的值最?。桓鶕?jù)折疊的性質知:AF=PF=5;在Rt△PFC中,PF=5,F(xiàn)C=1,則PC=4;∴BP=xmin=1;②當E、B重合時,BP的值最大;由折疊的性質可得BP=AB=1.所以BP的取值范圍是:1≤x≤1.故答案為:1≤x≤1.【點睛】此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關鍵.18、1.【解析】
根據(jù)一副直角三角板的各個角的度數(shù),結合三角形內(nèi)角和定理,即可求解.【詳解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案為:1.【點睛】本題主要考查三角形的內(nèi)角和定理以及對頂角的性質,掌握三角形的內(nèi)角和等于180°,是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1米.【解析】試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據(jù)BE=DE可得關于x的方程,解之可得.試題解析:解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=10,設AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.答:塔桿CH的高為1米.點睛:本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構造直角三角形并解直角三角形.20、(1)y=x2+3x;(2)當PO+PC的值最小時,點P的坐標為(2,);(3)存在,具體見解析.【解析】
(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數(shù)法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標即可;(3)存在,分別根據(jù)①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標為(2,3),∴可設拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當點P與點D重合時,PA+PC=AC;當點P不與點D重合時,PA+PC>AC;∴當點P與點D重合時,PO+PC的值最小,設直線AC的解析式為y=kx+b,根據(jù)題意,得解得∴直線AC的解析式為,當x=2時,,∴當PO+PC的值最小時,點P的坐標為(2,);(3)存在.①AC為對角線,當四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標為6,當x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標為?2,當x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點睛】二次函數(shù)的綜合應用,涉及矩形的性質、待定系數(shù)法、平行四邊形的性質、方程思想及分類討論思想等知識.21、,【解析】
先根據(jù)完全平方公式進行約分化簡,再代入求值即可.【詳解】原式=-==,將a=+1代入得,原式===,故答案為.【點睛】本題主要考查了求代數(shù)式的值、分式的運算,解本題的要點在于正確化簡,從而得到答案.22、(1)每臺電腦0.5萬元,每臺電子白板1.5萬元(2)見解析【解析】解:(1)設每臺電腦x萬元,每臺電子白板y萬元,根據(jù)題意得:,解得:。答:每臺電腦0.5萬元,每臺電子白板1.5萬元。(2)設需購進電腦a臺,則購進電子白板(30-a)臺,則,解得:,即a=15,16,17。故共有三種方案:方案一:購進電腦15臺,電子白板15臺.總費用為萬元;方案二:購進電腦16臺,電子白板14臺.總費用為萬元;方案三:購進電腦17臺,電子白板13臺.總費用為萬元?!喾桨溉M用最低。(1)設電腦、電子白板的價格分別為x,y元,根據(jù)等量關系:“1臺電腦+2臺電子白板=3.5萬元”,“2臺電腦+1臺電子白板=2.5萬元”,列方程組求解即可。(2)設計方案題一般是根據(jù)題意列出不等式組,求不等式組的整數(shù)解。設購進電腦x臺,電子白板有(30-x)臺,然后根據(jù)題目中的不等關系“總費用不超過30萬元,但不低于28萬元”列不等式組解答。23、(1)2-;(2)【解析】試題分析:點表示向右直爬2個單位到達點,點表示的數(shù)為把的值代入,對式子進行化簡即可.試題解析:由題意點和點的距離為,其點的坐標為因此點坐標把的值代入得:24、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.【解析】試題分析:(1)根據(jù)第一組別的人數(shù)和百分比得出樣本容量;(2)根據(jù)樣本容量以及頻數(shù)、頻率之間的關系得出a和b的值,(3)根據(jù)a的值將圖形補全;(4)根據(jù)圖示可得:優(yōu)秀的人為第四和第五組的人,將兩組的頻數(shù)相加乘以100%得出答案.試題解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考點:頻數(shù)分布直方圖25、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應再向前跑17米.【解析】
(1)依題意代入x的值可得拋物線的表達式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【詳解】解:(1)如圖,設第一次落地時,拋物線的表達式為由已知:當時即表達式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據(jù)題意:(即相當于將拋物線向下平移了2個單位)解得(米)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園安全疏散演練的全方位實施
- 現(xiàn)代天然氣管道系統(tǒng)維護與管理技術
- 2024-2025學年高中歷史下學期第7周說課稿(俄國農(nóng)奴制改革)
- 2024年九年級道德與法治上冊 第三單元 文明與家園 第五課 守望精神家園 第1框 延續(xù)文化血脈說課稿 新人教版
- 2024年春七年級生物下冊 第四單元 第六章 第二節(jié) 神經(jīng)系統(tǒng)的組成說課稿 (新版)新人教版
- 2024年六年級品社下冊《地球的傷心事》說課稿 山東版
- 2024-2025學年高中化學上學期第十一周 化學平衡說課稿
- 2024秋七年級數(shù)學上冊 第二章 有理數(shù)2.2數(shù)軸 2在數(shù)軸上比較數(shù)的大小說課稿(新版)華東師大版
- 2023九年級數(shù)學下冊 第二十八章 銳角三角函數(shù)28.2 解直角三角形及其應用28.2.2 應用舉例第2課時 方向角和坡角問題說課稿 (新版)新人教版
- Module 7 Unit 2 There are twelve boys on the bike(說課稿)-2024-2025學年外研版(三起)英語 四年級上冊
- 防滑防摔倒安全教育
- 乳腺癌課件教學課件
- 連續(xù)性腎替代治療抗菌藥物劑量調(diào)整專家共識(2024年版)解讀
- 春節(jié)節(jié)后收心安全培訓
- 2024年廣西區(qū)公務員錄用考試《行測》真題及答案解析
- 高中物理斜面模型大全(80個)
- 2025年高考物理復習壓軸題:電磁感應綜合問題(解析版)
- 2024-2030年芯片行業(yè)市場發(fā)展分析及發(fā)展趨勢前景預測報告
- 2024年個人車位租賃合同經(jīng)典版(二篇)
- 相互批評意見500條【5篇】
- 2024-2030年中國汽車駕駛培訓市場發(fā)展動態(tài)與前景趨勢預測報告
評論
0/150
提交評論