新高考數(shù)學二輪復(fù)習專題講測練專題15 周期性、單調(diào)性、奇偶性、對稱性的靈活運用(精講精練)(原卷版)_第1頁
新高考數(shù)學二輪復(fù)習專題講測練專題15 周期性、單調(diào)性、奇偶性、對稱性的靈活運用(精講精練)(原卷版)_第2頁
新高考數(shù)學二輪復(fù)習專題講測練專題15 周期性、單調(diào)性、奇偶性、對稱性的靈活運用(精講精練)(原卷版)_第3頁
新高考數(shù)學二輪復(fù)習專題講測練專題15 周期性、單調(diào)性、奇偶性、對稱性的靈活運用(精講精練)(原卷版)_第4頁
新高考數(shù)學二輪復(fù)習專題講測練專題15 周期性、單調(diào)性、奇偶性、對稱性的靈活運用(精講精練)(原卷版)_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題15周期性、單調(diào)性、奇偶性、對稱性的靈活運用【命題規(guī)律】從近五年的高考情況來看,本節(jié)是高考的一個重點,函數(shù)的單調(diào)性、奇偶性、周期性是高考的必考內(nèi)容,重點關(guān)注單調(diào)性、奇偶性結(jié)合在一起,與函數(shù)圖像、函數(shù)零點和不等式相結(jié)合進行考查,解題時要充分運用轉(zhuǎn)化思想和數(shù)形結(jié)合思想.【核心考點目錄】核心考點一:函數(shù)單調(diào)性的綜合應(yīng)用核心考點二:函數(shù)的奇偶性的綜合應(yīng)用核心考點三:已知SKIPIF1<0奇函數(shù)SKIPIF1<0核心考點四:利用軸對稱解決函數(shù)問題核心考點五:利用中心對稱解決函數(shù)問題核心考點六:利用周期性和對稱性解決函數(shù)問題核心考點七:類周期函數(shù)核心考點八:抽象函數(shù)的單調(diào)性、奇偶性、周期性、對稱性核心考點九:函數(shù)性質(zhì)的綜合【真題回歸】1.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域為R,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.12.(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0的定義域均為R,且SKIPIF1<0.若SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(多選題)(2022·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0,記SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0均為偶函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國·統(tǒng)考高考真題)若SKIPIF1<0是奇函數(shù),則SKIPIF1<0_____,SKIPIF1<0______.【方法技巧與總結(jié)】1、單調(diào)性技巧(1)證明函數(shù)單調(diào)性的步驟①取值:設(shè)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0定義域內(nèi)一個區(qū)間上的任意兩個量,且SKIPIF1<0;②變形:作差變形(變形方法:因式分解、配方、有理化等)或作商變形;③定號:判斷差的正負或商與SKIPIF1<0的大小關(guān)系;④得出結(jié)論.(2)函數(shù)單調(diào)性的判斷方法①定義法:根據(jù)增函數(shù)、減函數(shù)的定義,按照“取值—變形—判斷符號—下結(jié)論”進行判斷.②圖象法:就是畫出函數(shù)的圖象,根據(jù)圖象的上升或下降趨勢,判斷函數(shù)的單調(diào)性.③直接法:就是對我們所熟悉的函數(shù),如一次函數(shù)、二次函數(shù)、反比例函數(shù)等,直接寫出它們的單調(diào)區(qū)間.(3)記住幾條常用的結(jié)論:①若SKIPIF1<0是增函數(shù),則SKIPIF1<0為減函數(shù);若SKIPIF1<0是減函數(shù),則SKIPIF1<0為增函數(shù);②若SKIPIF1<0和SKIPIF1<0均為增(或減)函數(shù),則在SKIPIF1<0和SKIPIF1<0的公共定義域上SKIPIF1<0為增(或減)函數(shù);③若SKIPIF1<0且SKIPIF1<0為增函數(shù),則函數(shù)SKIPIF1<0為增函數(shù),SKIPIF1<0為減函數(shù);④若SKIPIF1<0且SKIPIF1<0為減函數(shù),則函數(shù)SKIPIF1<0為減函數(shù),SKIPIF1<0為增函數(shù).2、奇偶性技巧(1)函數(shù)具有奇偶性的必要條件是其定義域關(guān)于原點對稱.(2)奇偶函數(shù)的圖象特征.函數(shù)SKIPIF1<0是偶函數(shù)SKIPIF1<0函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱;函數(shù)SKIPIF1<0是奇函數(shù)SKIPIF1<0函數(shù)SKIPIF1<0的圖象關(guān)于原點中心對稱.(3)若奇函數(shù)SKIPIF1<0在SKIPIF1<0處有意義,則有SKIPIF1<0;偶函數(shù)SKIPIF1<0必滿足SKIPIF1<0.(4)偶函數(shù)在其定義域內(nèi)關(guān)于原點對稱的兩個區(qū)間上單調(diào)性相反;奇函數(shù)在其定義域內(nèi)關(guān)于原點對稱的兩個區(qū)間上單調(diào)性相同.(5)若函數(shù)SKIPIF1<0的定義域關(guān)于原點對稱,則函數(shù)SKIPIF1<0能表示成一個偶函數(shù)與一個奇函數(shù)的和的形式.記SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.(6)運算函數(shù)的奇偶性規(guī)律:運算函數(shù)是指兩個(或多個)函數(shù)式通過加、減、乘、除四則運算所得的函數(shù),如SKIPIF1<0.對于運算函數(shù)有如下結(jié)論:奇SKIPIF1<0奇=奇;偶SKIPIF1<0偶=偶;奇SKIPIF1<0偶=非奇非偶;奇SKIPIF1<0奇=偶;奇SKIPIF1<0偶=奇;偶SKIPIF1<0偶=偶.(7)復(fù)合函數(shù)SKIPIF1<0的奇偶性原來:內(nèi)偶則偶,兩奇為奇.(8)常見奇偶性函數(shù)模型奇函數(shù):=1\*GB3①函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.=2\*GB3②函數(shù)SKIPIF1<0.=3\*GB3③函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0=4\*GB3④函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.注意:關(guān)于=1\*GB3①式,可以寫成函數(shù)SKIPIF1<0或函數(shù)SKIPIF1<0.偶函數(shù):=1\*GB3①函數(shù)SKIPIF1<0.=2\*GB3②函數(shù)SKIPIF1<0.=3\*GB3③函數(shù)SKIPIF1<0類型的一切函數(shù).④常數(shù)函數(shù)3、周期性技巧SKIPIF1<04、函數(shù)的的對稱性與周期性的關(guān)系(1)若函數(shù)SKIPIF1<0有兩條對稱軸SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(2)若函數(shù)SKIPIF1<0的圖象有兩個對稱中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(3)若函數(shù)SKIPIF1<0有一條對稱軸SKIPIF1<0和一個對稱中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0.5、對稱性技巧(1)若函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0.(2)若函數(shù)SKIPIF1<0關(guān)于點SKIPIF1<0對稱,則SKIPIF1<0.(3)函數(shù)SKIPIF1<0與SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,函數(shù)SKIPIF1<0與SKIPIF1<0關(guān)于原點對稱.【核心考點】核心考點一:函數(shù)單調(diào)性的綜合應(yīng)用【典型例題】例1.(2023春·江西鷹潭·高三貴溪市實驗中學??茧A段練習)已知函數(shù)SKIPIF1<0是SKIPIF1<0上的減函數(shù),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例2.(2023·全國·高三專題練習)設(shè)函數(shù)SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例3.(2023·全國·高三專題練習)已知SKIPIF1<0,且滿足SKIPIF1<0,則下列正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0核心考點二:函數(shù)的奇偶性的綜合應(yīng)用【典型例題】例4.(2023·全國·高三專題練習)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0為偶函數(shù),則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例5.(2023·全國·高三專題練習)設(shè)SKIPIF1<0是定義在R上的奇函數(shù),且當SKIPIF1<0時,SKIPIF1<0,不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例6.(2023·全國·高三專題練習)已知偶函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則使不等式SKIPIF1<0成立的實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例7.(2023·全國·高三專題練習)定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例8.(2023春·廣西·高三期末)SKIPIF1<0是定義在R上的函數(shù),SKIPIF1<0為奇函數(shù),則SKIPIF1<0(

)A.-1 B.SKIPIF1<0 C.SKIPIF1<0 D.1例9.(2023春·甘肅蘭州·高三蘭化一中??茧A段練習)若函數(shù)f(x)=SKIPIF1<0,則滿足SKIPIF1<0恒成立的實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點三:已知SKIPIF1<0奇函數(shù)+M【典型例題】例10.(2022·重慶一中高三階段練習)已知SKIPIF1<0(a,b為實數(shù)),SKIPIF1<0,則SKIPIF1<0______.例11.(2022·河南·西平縣高級中學模擬預(yù)測(理))已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.2 B.3 C.-2 D.-3例12.(2022·福建省福州第一中學高二期末)若對SKIPIF1<0,有SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在最大值和最小值,則其最大值與最小值的和為()A.4 B.8 C.12 D.16核心考點四:利用軸對稱解決函數(shù)問題【典型例題】例13.(2022·全國·高三專題練習)若SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0等于(

)A.2 B.3 C.4 D.5例14.(2021春·高一單元測試)設(shè)函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.(0,2] B.SKIPIF1<0C.[2,+∞) D.SKIPIF1<0∪[2,+∞)例15.(2021春·西藏拉薩·高三??茧A段練習)已知函數(shù)SKIPIF1<0,則SKIPIF1<0的大小關(guān)系(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0核心考點五:利用中心對稱解決函數(shù)問題【典型例題】例16.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0是SKIPIF1<0上的偶函數(shù),且SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例17.(2021春·安徽六安·高三??茧A段練習)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),若函數(shù)SKIPIF1<0與SKIPIF1<0圖象共有SKIPIF1<0個交點為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例18.(2021春·貴州黔東南·高一凱里一中??计谥校┮阎瘮?shù)SKIPIF1<0是奇函數(shù),若函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點分別為SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,則交點的所有橫坐標和縱坐標之和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例19.(2022春·湖北恩施·高一恩施市第一中學??茧A段練習)已知定義在R上的奇函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸交點的橫坐標分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例20.(2021春·四川綿陽·高一四川省綿陽南山中學??茧A段練習)已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0滿足SKIPIF1<0,若函數(shù)SKIPIF1<0恰有SKIPIF1<0個零點,則所有這些零點之和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點六:利用周期性和對稱性解決函數(shù)問題【典型例題】例21.(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),且當SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.SKIPIF1<0例22.(2023·四川資陽·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為偶函數(shù),SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),且SKIPIF1<0.則SKIPIF1<0(

)A.16 B.20 C.24 D.28例23.(2023·山東濟寧·高三嘉祥縣第一中學??茧A段練習)已知定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0.若直線SKIPIF1<0與曲線SKIPIF1<0恰有三個公共點,那么實數(shù)a的取值的集合為(

)A.SKIPIF1<0(SKIPIF1<0) B.SKIPIF1<0(SKIPIF1<0)C.SKIPIF1<0(SKIPIF1<0) D.SKIPIF1<0(SKIPIF1<0)例24.(2023·全國·高三專題練習)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,若函數(shù)SKIPIF1<0圖象與SKIPIF1<0的圖象恰有10個不同的公共點,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例25.(2023春·江西鷹潭·高三貴溪市實驗中學??茧A段練習)已知SKIPIF1<0是定義在R上的奇函數(shù),SKIPIF1<0,恒有SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<01,則SKIPIF1<0(

)A.1 B.-1 C.0 D.2例26.(2023·山東濟寧·高三嘉祥縣第一中學??茧A段練習)已知定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0.若直線SKIPIF1<0與曲線SKIPIF1<0恰有三個公共點,那么實數(shù)a的取值的集合為(

)A.SKIPIF1<0(SKIPIF1<0) B.SKIPIF1<0(SKIPIF1<0)C.SKIPIF1<0(SKIPIF1<0) D.SKIPIF1<0(SKIPIF1<0)例27.(2023·全國·高三專題練習)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,若函數(shù)SKIPIF1<0圖象與SKIPIF1<0的圖象恰有10個不同的公共點,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例28.(2023春·江西鷹潭·高三貴溪市實驗中學??茧A段練習)已知SKIPIF1<0是定義在R上的奇函數(shù),SKIPIF1<0,恒有SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<01,則SKIPIF1<0(

)A.1 B.-1 C.0 D.2核心考點七:類周期函數(shù)【典型例題】例29.(2022·天津一中高三月考)定義域為SKIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,若當SKIPIF1<0時,不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例30.(2022·浙江·杭州高級中學高三期中)定義域為SKIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0時,SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例31.(2022山西省榆林市高三二模理科數(shù)學試卷)定義域為SKIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,若當SKIPIF1<0時,函數(shù)SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點八:抽象函數(shù)的單調(diào)性、奇偶性、周期性、對稱性【典型例題】例32.(2023·廣東·高三統(tǒng)考學業(yè)考試)已知函數(shù)SKIPIF1<0對任意SKIPIF1<0,都有SKIPIF1<0成立.有以下結(jié)論:①SKIPIF1<0;②SKIPIF1<0是SKIPIF1<0上的偶函數(shù);③若SKIPIF1<0,則SKIPIF1<0;④當SKIPIF1<0時,恒有SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.則上述所有正確結(jié)論的編號是________例33.(2022·山東聊城·二模)已知SKIPIF1<0為SKIPIF1<0上的奇函數(shù),SKIPIF1<0,若對SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,都有SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例34.(2022·全國·模擬預(yù)測(理))已知定義在R上的奇函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例35.(2022·黑龍江大慶·三模(理))已知定義域為R的偶函數(shù)滿足SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則方程SKIPIF1<0在區(qū)間SKIPIF1<0上所有解的和為(

)A.8 B.7 C.6 D.5【典型例題】例36.(2023·上海·高三專題練習)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),在SKIPIF1<0上是增函數(shù),且SKIPIF1<0恒成立,則不等式SKIPIF1<0的解集為______.例37.(2023春·山東濟南·高三統(tǒng)考期中)已知SKIPIF1<0是定義域為R的奇函數(shù),SKIPIF1<0為奇函數(shù),則SKIPIF1<0__________.例38.(2023春·重慶璧山·高三校聯(lián)考階段練習)設(shè)a>0,b>0,若關(guān)于x的方程SKIPIF1<0恰有三個不同的實數(shù)解x1,x2,x3,且x1<x2<x3=b,則a+b的值為______.例39.(2023·全國·高三專題練習)已知SKIPIF1<0是SKIPIF1<0上的偶函數(shù),對于任意的SKIPIF1<0,均有SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0的所有零點之和為______;【新題速遞】一、單選題1.(2023春·江西·高三校聯(lián)考階段練習)己知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0圖像的公共點個數(shù)為n,且這些公共點的橫坐標從小到大依次為SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,則下列說法正確的有(

)個①若SKIPIF1<0,則SKIPIF1<0

②若SKIPIF1<0,則SKIPIF1<0③若SKIPIF1<0,則SKIPIF1<0

④若SKIPIF1<0,則SKIPIF1<0A.1 B.2 C.3 D.42.(2023·青海海東·統(tǒng)考一模)已知函數(shù)SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,則下列結(jié)論正確的是(

)A.當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上是增函數(shù)B.當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上是增函數(shù)C.SKIPIF1<0的單調(diào)性與SKIPIF1<0有關(guān)D.若不等式SKIPIF1<0的解集是SKIPIF1<0,則SKIPIF1<03.(2023·青海海東·統(tǒng)考一模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則不等式SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2023春·重慶·高三統(tǒng)考階段練習)已知函數(shù)SKIPIF1<0,正實數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.1 B.2 C.4 D.SKIPIF1<05.(2023春·江西鷹潭·高三貴溪市實驗中學??茧A段練習)若正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2023春·江西·高三校聯(lián)考階段練習)已知f(x),g(x)分別為定義域為R的偶函數(shù)和奇函數(shù),且SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0在(0,ln2)上恒成立,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023春·江蘇南京·高三統(tǒng)考階段練習)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2023春·遼寧·高三校聯(lián)考期中)已知偶函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則滿足SKIPIF1<0的x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題9.(2023春·福建寧德·高三??茧A段練習)已知函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0為偶函數(shù),則下列一定成立的有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<010.(2023春·廣東廣州·高三統(tǒng)考階段練習)已知函數(shù)SKIPIF1<0、SKIPIF1<0的定義域均為SKIPIF1<0,SKIPIF1<0為偶函數(shù),且SKIPIF1<0,SKIPIF1<0,下列說法正確的有(

)A.函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱 B.函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱C.函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù) D.函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù)11.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論