2023年上??茖W(xué)技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年上??茖W(xué)技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年上??茖W(xué)技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年上??茖W(xué)技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年上??茖W(xué)技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年上??茖W(xué)技術(shù)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.語句|x|≤3或|x|>5的否定是()

A.|x|≥3或|x|<5

B.|x|>3或|x|≤5

C.|x|≥3且|x|<5

D.|x|>3且|x|≤5答案:D2.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)與橢圓=1的一個焦點(diǎn)重合,則拋物線方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A3.已知||=3,A、B分別在x軸和y軸上運(yùn)動,O為原點(diǎn),則動點(diǎn)P的軌跡方程是()

A.

B.

C.

D.答案:B4.以下命題:

①兩個共線向量是指在同一直線上的兩個向量;

②共線的兩個向量互相平行;

③共面的三個向量是指在同一平面內(nèi)的三個向量;

④共面的三個向量是指平行于同一平面的三個向量.

其中正確命題的序號是______.答案:解①根據(jù)共面與共線向量的定義可知①錯誤.②根據(jù)共線向量的定義可知②正確.③根據(jù)共面向量的定義可知③錯誤.④根據(jù)共面向量的定義可知④正確.故為:②④.5.由數(shù)字0、1、2、3、4可組成不同的三位數(shù)的個數(shù)是()

A.100

B.125

C.64

D.80答案:A6.平面內(nèi)有兩個定點(diǎn)F1(-5,0)和F2(5,0),動點(diǎn)P滿足條件|PF1|-|PF2|=6,則動點(diǎn)P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動點(diǎn)P的軌跡方程是x29-y216=1(x≥3).故選D.7.已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h(yuǎn)=4.設(shè)其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:4838.已知線段AB的兩端點(diǎn)坐標(biāo)為A(9,-3,4),B(9,2,1),則線段AB與坐標(biāo)平面()A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案:∵A(9,-3,4),B(9,2,1),∴AB=(9,2,1)-(9,-3,4)=(0,5,-3),∵yOz平面內(nèi)的向量的一般形式為a=(0,y,z)∴向量AB∥a,可得AB∥平面yOz.故選:C9.已知曲線,

θ∈[0,2π)上一點(diǎn)P到點(diǎn)A(-2,0)、B(2,0)的距離之差為2,則△PAB是()

A.銳角三角形

B.鈍角三角形

C.直角三角形

D.等腰三角形答案:C10.正方體AC1中,S,T分別是棱AA1,A1B1上的點(diǎn),如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點(diǎn),∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°11.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點(diǎn)在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標(biāo)準(zhǔn)形式得:x21sinα+y21cosα=1.∵方程表示焦點(diǎn)在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)12.如右圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,求不同著色方法共有多少種?(以數(shù)字作答).答案:本題是一個分類和分步綜合的題目,根據(jù)題意可分類求第一類用三種顏色著色,由乘法原理C14C41

C12=24種方法;第二類,用四種顏色著色,由乘法原理有2C14C41

C12

C11=48種方法.從而再由加法原理得24+48=72種方法.即共有72種不同的著色方法.13.已知點(diǎn)P是拋物線y2=2x上的一個動點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為()

A.

B.3

C.

D.答案:A14.某種肥皂原零售價每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價,其余按原價的七折銷售;第二種:全部按原價的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D15.下列對一組數(shù)據(jù)的分析,不正確的說法是()

A.?dāng)?shù)據(jù)極差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

B.?dāng)?shù)據(jù)平均數(shù)越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

C.?dāng)?shù)據(jù)標(biāo)準(zhǔn)差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定

D.?dāng)?shù)據(jù)方差越小,樣本數(shù)據(jù)分布越集中、穩(wěn)定答案:B16.已知復(fù)數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個以z為根的實(shí)系數(shù)一元二次方程.答案:[解法一]∵復(fù)數(shù)w滿足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實(shí)系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個一元二次方程可以是x2-6x+10=0.[解法二]設(shè)w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].17.(本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設(shè)計一個算法,找出大于100,小于1000的所有“水仙花數(shù)”.

(1)用自然語言寫出算法;

(2)畫出流程圖.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,則執(zhí)行第三步,否則算法結(jié)束.第三步,若這個數(shù)i等于它各位上的數(shù)字的立方的和,則輸出這個數(shù).第四步,i=i+1,返回第二步.(2)程序框圖,如右圖所示.18.不等式的解集是

.答案:[0,2]解析:本小題主要考查根式不等式的解法,去掉根號是解根式不等式的基本思路,也考查了轉(zhuǎn)化與化歸的思想.原不等式等價于解得0≤x≤2.19.若直線的參數(shù)方程為(t為參數(shù)),則該直線的斜率為()

A.

B.2

C.1

D.-1答案:D20.為了調(diào)查上海市中學(xué)生的身體狀況,在甲、乙兩所學(xué)校中各隨意抽取了

100名學(xué)生,測試引體向上,結(jié)果如下表所示:

(1)甲乙兩校被測學(xué)生引體向上的平均數(shù)分別是:甲校______個,乙校______個.

(2)若5個以下(不含5個)為不合格,則甲乙兩校的合格率分別為甲校______

乙校______

(3)若15個以上(含15個)為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)

(4)用你所學(xué)的統(tǒng)計知識對兩所學(xué)校學(xué)生的身體狀況作一個比較.你的結(jié)論是______.答案:(1)甲校被測學(xué)生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測學(xué)生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些21.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.22.如圖,PT是⊙O的切線,切點(diǎn)為T,直線PA與⊙O交于A、B兩點(diǎn),∠TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3223.有3名同學(xué)要爭奪2個比賽項(xiàng)目的冠軍,冠軍獲得者共有______種可能.答案:第一個項(xiàng)目的冠軍有3種情況,第二個項(xiàng)目的冠軍也有3種情況,根據(jù)分步計數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.24.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據(jù)題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:10225.長方體的共頂點(diǎn)的三個側(cè)面面積分別為3,5,15,則它的體積為______.答案:設(shè)長方體過同一頂點(diǎn)的三條棱長分別為a,b,c,∵從長方體一個頂點(diǎn)出發(fā)的三個面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長方體的體積為15,故為:15.26.解下列關(guān)于x的不等式

(1)

(2)答案:(1)(2)原不等式的解集為解析:(1)

解:(2)

解:分析該題要設(shè)法去掉絕對值符號,可由去分類討論當(dāng)時原不等式等價于

故得不等式的解集為所以原不等式的解集為27.已知圓C:x2+y2=12,直線l:4x+3y=25.

(1)圓C的圓心到直線l的距離為______;

(2)圓C上任意一點(diǎn)A到直線l的距離小于2的概率為______.答案:(1)由題意知圓x2+y2=12的圓心是(0,0),圓心到直線的距離是d=2532+42=5,(2)由題意知本題是一個幾何概型,試驗(yàn)發(fā)生包含的事件是從這個圓上隨機(jī)的取一個點(diǎn),對應(yīng)的圓上整個圓周的弧長,滿足條件的事件是到直線l的距離小于2,過圓心做一條直線交直線l與一點(diǎn),根據(jù)上一問可知圓心到直線的距離是5,在這條垂直于直線l的半徑上找到圓心的距離為3的點(diǎn)做半徑的垂線,根據(jù)弦心距,半徑,弦長之間組成的直角三角形得到符合條件的弧長對應(yīng)的圓心角是60°根據(jù)幾何概型的概率公式得到P=60°360°=16故為:5;1628.極坐標(biāo)方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個圓

D.一條拋物線答案:B29.

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F的直線交y軸正半軸于點(diǎn)P,交拋物線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B30.中心在原點(diǎn),焦點(diǎn)在橫軸上,長軸長為4,短軸長為2,則橢圓方程是(

A.

B.

C.

D.答案:B31.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點(diǎn)).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|

=

3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.32.已知向量a=(8,x,x).b=(x,1,2),其中x>0.若a∥b,則x的值為()

A.8

B.4

C.2

D.0答案:B33.應(yīng)用反證法推出矛盾的推導(dǎo)過程中要把下列哪些作為條件使用()

①結(jié)論相反的判斷,即假設(shè)

②原命題的條件

③公理、定理、定義等

④原結(jié)論

A.①②

B.①②④

C.①②③

D.②③答案:C34.設(shè)向量a=(x+1,y),b=(x-1,y),點(diǎn)P(x,y)為動點(diǎn),已知|a|+|b|=4.

(1)求點(diǎn)p的軌跡方程;

(2)設(shè)點(diǎn)p的軌跡與x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)F(1,0)的直線交點(diǎn)P的軌跡于B、C兩點(diǎn),試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請說明理由.答案:(1)由已知,(x+)2+y2+(x-1)2+1=4,所以動點(diǎn)P的軌跡M是以點(diǎn)E(-1,0),F(xiàn)(1,0)為焦點(diǎn),長軸長為4的橢圓.因?yàn)閏=1,a=2,則b2=a2-c2=3.故動點(diǎn)P的軌跡M方程是x24+y23=1(2)設(shè)直線BC的方程x=my+1與(1)中的橢圓方程x24+y23=1聯(lián)立消去x可得(3m2+4)y2+6my-9=0,設(shè)點(diǎn)B(x1,y1),C(x2,y2)則y1+y2=-6m3m2+4,y1y2=-93m2+4,所以|BC|=m2+1(y1+y2)2-4y1y2=12(m2+1)3m2+4點(diǎn)A到直線BC的距離d=31+m2S△ABC=12|BC|d=181+m23m2+4令1+m2=t,t≥1,∴S△ABC=12|BC|d=18t3t2+1=183t+1t≤92故三角形的面積最大值為9235.已知橢圓C1:x2a2+y2b2=1(a>b>0)的離心率為33,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C1的短半軸長為半徑的圓相切.

(1)求橢圓C1的方程;

(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動直線l2垂直于直線l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(3)設(shè)C2與x軸交于點(diǎn)Q,不同的兩點(diǎn)R,S在C2上,且滿足QR?RS=0,求|QS|的取值范圍.答案:(1)由e=33得2a2=3b2,又由直線l:y=x+2與圓x2+y2=b2相切,得b=2,a=3,∴橢圓C1的方程為:x23+y22=1.(4分)(2)由MP=MF2得動點(diǎn)M的軌跡是以l1:x=-1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,∴點(diǎn)M的軌跡C2的方程為y2=4x.(8分)(3)Q(0,0),設(shè)R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR?RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化簡得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(當(dāng)且僅當(dāng)y1=±4時等號成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴當(dāng)y22=64,即y2=±8時|QS|min=85,∴|QS|的取值范圍是[85,+∞).(13分)36.已知向量與的夾角為120°,若向量,且,則=()

A.2

B.

C.

D.答案:C37.已知雙曲線的兩個焦點(diǎn)為F1(-,0),F2(,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()

A.

B.

C.

D.答案:C38.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設(shè)直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C39.已知復(fù)數(shù)z滿足(1-i)?z=1,則z=______.答案:∵復(fù)數(shù)z滿足(1-i)?z=1,∴z=11-i=1+i(1-i)(1+i)=12+12i,故為12+i2.40.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()

A.1

B.2

C.-2

D.-1答案:D41.對于空間四點(diǎn)A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點(diǎn)共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點(diǎn)共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點(diǎn)共面,可得A、B、C、D四點(diǎn)有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.42.在下列條件中,使M與不共線三點(diǎn)A、B、C,一定共面的是

[

]答案:C43.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點(diǎn)A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且

則滿足條件的函數(shù)f(x)有()

A.6個

B.10個

C.12個

D.16個答案:C44.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()

A.1

B.2

C.3

D.5

答案:D45.已知點(diǎn)A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點(diǎn)B的坐標(biāo)為______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點(diǎn)A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)46.給出的下列幾個命題:

①向量共面,則它們所在的直線共面;

②零向量的方向是任意的;

③若則存在唯一的實(shí)數(shù)λ,使

其中真命題的個數(shù)為()

A.0

B.1

C.2

D.3答案:B47.“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:依題意,復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù),?a=0且b≠0,∴“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的必要不充分條件,故選B.48.利用斜二側(cè)畫法畫直觀圖時,①三角形的直觀圖還是三角形;②平行四邊形的直觀圖還是平行四邊形;③正方形的直觀圖還是正方形;④菱形的直觀圖還是菱形.其中正確的是

______.答案:由斜二側(cè)直觀圖的畫法法則可知:①三角形的直觀圖還是三角形;正確;②平行四邊形的直觀圖還是平行四邊形;正確.③正方形的直觀圖還是正方形;應(yīng)該是平行四邊形;所以不正確;④菱形的直觀圖還是菱形.也是平行四邊形,所以不正確.故為:①②49.已知點(diǎn)P是拋物線y2=2x上的動點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點(diǎn)F(12,0),準(zhǔn)線x=-12,延長PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點(diǎn),可計算得P0(3,94),另一交點(diǎn)(-13,118)舍去.當(dāng)P重合于P0時,|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.50.拋擲甲、乙兩骰子,記事件A:“甲骰子的點(diǎn)數(shù)為奇數(shù)”;事件B:“乙骰子的點(diǎn)數(shù)為偶數(shù)”,則P(B|A)的值等于()

A.

B.

C.

D.答案:B第2卷一.綜合題(共50題)1.若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C2.如圖所示,已知點(diǎn)P為菱形ABCD外一點(diǎn),且PA⊥面ABCD,PA=AD=AC,點(diǎn)F為PC中點(diǎn),則二面角CBFD的正切值為()

A.

B.

C.

D.

答案:D3.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯,則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項(xiàng)原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項(xiàng)正確;B選項(xiàng)原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項(xiàng)正確;C選項(xiàng)原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項(xiàng)錯誤;D選項(xiàng)原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項(xiàng)正確;故選C.4.(理科)若隨機(jī)變量ξ~N(2,22),則D(14ξ)的值為______.答案:解;∵隨機(jī)變量ξ服從正態(tài)分布ξ~N(2,22),∴可得隨機(jī)變量ξ方差是4,∴D(14ξ)的值為142D(ξ)=142×4=14.故為:14.5.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結(jié)合α∈[0°,180°),可得α=60°故選:B6.已知集合A={2,x,y},B={2x,y2,2}且x,y≠0,若A=B,則實(shí)數(shù)x+y的值______.答案:因?yàn)榧螦={2,x,y},B={2x,y2,2}且x,y≠0,所以x=y2y=2x,解得x=14y=12,所以x+y=34.故為:34.7.為了考察兩個變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做10次和15次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為l1和l2,已知兩個人在試驗(yàn)中發(fā)現(xiàn)對變量x的觀測數(shù)據(jù)的平均值都是s,對變量y的觀測數(shù)據(jù)的平均值都是t,那么下列說法正確的是()

A.l1和l2必定平行

B.l1與l2必定重合

C.l1和l2有交點(diǎn)(s,t)

D.l1與l2相交,但交點(diǎn)不一定是(s,t)答案:C8.閱讀下面的程序框圖,該程序運(yùn)行后輸出的結(jié)果為______.答案:循環(huán)前,S=0,A=1,第1次判斷后循環(huán),S=1,A=2,第2次判斷并循環(huán),S=3,A=3,第3次判斷并循環(huán),S=6,A=4,第4次判斷并循環(huán),S=10,A=5,第5次判斷并循環(huán),S=15,A=6,第6次判斷并退出循環(huán),輸出S=15.故為:15.9.一個家庭有兩個小孩,假設(shè)生男生女是等可能的,已知這個家庭有一個是女孩的條件下,這時另一個也是女孩的概率是()

A.

B.

C.

D.答案:D10.命題“存在x0∈R,使x02+1<0”的否定是______.答案:∵命題“存在x0∈R,使x02+1<0”是一個特稱命題∴命題“存在x0∈R,使x02+1<0”的否定是“對任意x0∈R,使x02+1≥0”故為:對任意x0∈R,使x02+1≥011.設(shè)i為虛數(shù)單位,若=b+i(a,b∈R),則a,b的值為()

A.a(chǎn)=0,b=1

B.a(chǎn)=1,b=0

C.a(chǎn)=1,b=1

D.a(chǎn)=,b=-1答案:B12.橢圓x29+y216=1上一動點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知動點(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.13.過直線x+y-22=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是______.答案:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:直線PA和PB為過點(diǎn)P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)14.設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點(diǎn)的個數(shù)為()

A.1

B.2

C.3

D.4答案:B15.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.

(1)求證:圓心O在直線AD上.

(2)求證:點(diǎn)C是線段GD的中點(diǎn).答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點(diǎn)F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點(diǎn)C是線段GD的中點(diǎn).(10分)16.判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域?yàn)镽,故A錯誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域?yàn)镽,g(x)的定義域?yàn)椋簕x|x≥0},故D錯誤;故選B.17.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.18.設(shè)直線y=kx與橢圓x24+y23=1相交于A、B兩點(diǎn),分別過A、B向x軸作垂線,若垂足恰為橢圓的兩個焦點(diǎn),則k等于()A.±32B.±23C.±12D.±2答案:將直線與橢圓方程聯(lián)立,y=kxx24+y23=1,化簡整理得(3+4k2)x2=12(*)因?yàn)榉謩e過A、B向x軸作垂線,垂足恰為橢圓的兩個焦點(diǎn),故方程的兩個根為±1.代入方程(*),得k=±32故選A.19.由直角△ABC勾上一點(diǎn)D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項(xiàng),又為ED和EF的比例中項(xiàng).

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因?yàn)镋G為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項(xiàng),即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項(xiàng).20.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點(diǎn)F且斜率為k(k>0)的直線與C相交于A、B兩點(diǎn),若AF=3FB,則k=______.答案:設(shè)l為橢圓的右準(zhǔn)線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.21.命題“三角形中最多只有一個內(nèi)角是直角”的結(jié)論的否定是()

A.有兩個內(nèi)角是直角

B.有三個內(nèi)角是直角

C.至少有兩個內(nèi)角是直角

D.沒有一個內(nèi)角是直角答案:C22.設(shè)f(x)=ex(x≤0)ln

x(x>0),則f[f(13)]=______.答案:因?yàn)閒(x)=ex(x≤0)ln

x(x>0),所以f(13)=ln13<0,所以f[f(13)]=f(ln13)=eln13=13,故為13.23.“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:依題意,復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù),?a=0且b≠0,∴“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的必要不充分條件,故選B.24.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.25.{,,}=是空間向量的一個基底,設(shè)=+,=+,=+,給出下列向量組:①{,,},②{,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.

A.1

B.2

C.3

D.4答案:C26.在7塊并排、形狀大小相同的試驗(yàn)田上進(jìn)行施化肥量對水稻產(chǎn)量影響的試驗(yàn),得到如下表所示的一組數(shù)據(jù)(單位:kg).

(1)畫出散點(diǎn)圖;

(2)求y關(guān)于x的線性回歸方程;

(3)若施化肥量為38kg,其他情況不變,請預(yù)測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點(diǎn)圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測,施化肥量為38kg,其他情況不變時,水稻的產(chǎn)量是438kg.27.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.28.若A(-1,0,1),B(1,4,7)在直線l上,則直線l的一個方向向量為()

A.(1,2,3)

B.(1,3,2)

C.(2,1,3)

D.(3,2,1)答案:A29.某程序框圖如圖所示,若a=3,則該程序運(yùn)行后,輸出的x值為______.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運(yùn)算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.30.已知不等式a≤對x取一切負(fù)數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對x取一切負(fù)數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.31.已知f(x)=2x,g(x)=3x.

(1)當(dāng)x為何值時,f(x)=g(x)?

(2)當(dāng)x為何值時,f(x)>1?f(x)=1?f(x)<1?

(3)當(dāng)x為何值時,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(diǎn)(0,1),且這兩個圖象只有一個公共點(diǎn),∴當(dāng)x=0時,f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時,f(x)>1;當(dāng)x=0時,f(x)=1;當(dāng)x<0時,f(x)<1.(3)由圖可知:當(dāng)x>1時,g(x)>3;當(dāng)x=1時,g(x)=3;當(dāng)x<1時,g(x)<3.32.直角△PIB中,∠PBO=90°,以O(shè)為圓心、OB為半徑作圓弧交OP于A點(diǎn).若弧AB等分△POB的面積,且∠AOB=α弧度,則(

A.tanα=α

B.tan=2α

C.sinα=2cosα

D.2sin=cosα答案:B33.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB

+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+

12PC=12a-32b+12c.故為:12a-32b+12c.34.如圖為一個求50個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>50

B.i<50

C.i>=50

D.i<=50

答案:A35.圓心在x軸上,且過兩點(diǎn)A(1,4),B(3,2)的圓的方程為______.答案:設(shè)圓心坐標(biāo)為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點(diǎn)A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2036.已知某車間加工零件的個數(shù)x與所花費(fèi)時間y(h)之間的線性回歸方程為=0.01x+0.5,則加工600個零件大約需要的時間為()

A.6.5h

B.5.5h

C.3.5h

D.0.3h答案:A37.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時,由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根時,-1≤a≤178故為:-1≤a≤17838.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.39.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調(diào)遞減,其圖象關(guān)于直線x=2對稱,則下列式子可以成立的是()

A.

B.

C.

D.答案:D40.某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小球的抽獎箱中,每次取出一球記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6則中一等獎,等于5中二等獎,等于4或3中三等獎.

(1)求中三等獎的概率;

(2)求中獎的概率.答案:(1)設(shè)“中三等獎”為事件A,“中獎”為事件B,從四個小球中有放回的取兩個共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16種不同的結(jié)果兩個小球號碼相加之和等于4的取法有3種:(1,3),(2,2),(3,1)兩個小球號相加之和等于3的取法有4種:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等獎的概率為716;(2)兩個小球號碼相加之和等于3的取法有4種;(0,3),(1,2),(2,1),(3,0)兩個小球相加之和等于4的取法有3種;(1,3),(2,2),(3,1)兩個小球號碼相加之和等于5的取法有2種:(2,3),(3,2)兩個小球號碼相加之和等于6的取法有1種:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中獎的概率為:58.41.如圖為某公司的組織結(jié)構(gòu)圖,則后勤部的直接領(lǐng)導(dǎo)是______.

答案:有已知中某公司的組織結(jié)構(gòu)圖,可得專家辦公室直接領(lǐng)導(dǎo):財務(wù)部,后勤部和編輯部三個部門,故后勤部的直接領(lǐng)導(dǎo)是專家辦公室.故為:專家辦公室.42.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:

則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對應(yīng)的四邊形是一個有一組鄰邊相等的平行四邊形,∴這里是一個菱形,②處的圖形是一個有一條腰和底邊垂直的梯形,∴②處是一個直角梯形,故為:菱形;直角梯形.43.滿足{1,2}∪A={1,2,3}的集合A的個數(shù)為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數(shù)為4.44.已知函數(shù)f(x)=x21+x2.

(1)求f(2)與f(12),f(3)與f(13);

(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(1x)有什么關(guān)系?并證明你的結(jié)論;

(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分45.為了評價某個電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過計算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是()

A.有99%的人認(rèn)為該欄目優(yōu)秀

B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系

C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系

D.沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D46.我們稱正整數(shù)n為“好數(shù)”,如果n的二進(jìn)制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:

(1)二進(jìn)制表示中恰有5位數(shù)碼的好數(shù)共有______個;

(2)不超過2012的好數(shù)共有______個.答案:(1)二進(jìn)制表示中恰有5位數(shù)碼的二進(jìn)制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進(jìn)制數(shù)為:11111011100,它是一個十一位的二進(jìn)制數(shù).其中一位的二進(jìn)制數(shù)是:1,共有C11個;其中二位的二進(jìn)制數(shù)是:11,共有C22個;

其中三位的二進(jìn)制數(shù)是:101,110,111,共有C12+C22個;

其中四位的二進(jìn)制數(shù)是:1011,1101,1110,1111,共有C23+C33個;

其中五位的二進(jìn)制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;

以此類推,其中十位的二進(jìn)制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進(jìn)制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個47.設(shè)集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.48.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點(diǎn)A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=149.有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標(biāo)有字母A、3個球標(biāo)有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號盒子中任取一個球;若第一次取得標(biāo)有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為()

A.0.59

B.0.54

C.0.8

D.0.15答案:A50.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).第3卷一.綜合題(共50題)1.如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點(diǎn),F(xiàn)是橢圓的一個焦點(diǎn),則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點(diǎn),F(xiàn)是橢圓的一個焦點(diǎn),則根據(jù)橢圓的對稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.2.對賦值語句的描述正確的是(

①可以給變量提供初值

②將表達(dá)式的值賦給變量

③可以給一個變量重復(fù)賦值

④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個算法時,經(jīng)常要引入變量,并賦給該變量一個值。用來表明賦給某一個變量一個具體的確定值的語句叫做賦值語句。賦值語句的一般格式是:變量名=表達(dá)式其中“=”為賦值號.故選A。點(diǎn)評:簡單題,賦值語句的一般格式是:變量名=表達(dá)式其中"="為賦值號。3.在極坐標(biāo)系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標(biāo)為()

A.(2,0)

B.

C.(2,π)

D.答案:D4.橢圓焦點(diǎn)在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點(diǎn),滿足OM⊥ON,求橢圓方程.答案:設(shè)橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設(shè)M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.5.在(x+2y)n的展開式中第六項(xiàng)與第七項(xiàng)的系數(shù)相等,求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).答案:∵在(x+2y)n的展開式中第六項(xiàng)與第七項(xiàng)的系數(shù)相等,∴Cn525=Cn626,∴n=8,∴二項(xiàng)式共有9項(xiàng),最中間一項(xiàng)的系數(shù)最大即展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是第5項(xiàng).6.下列四個命題中,正確的有

①;

②;

③,使;

④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個點(diǎn)評:本題考查全稱命題、特稱命題,容易題7.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+

(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當(dāng)且僅當(dāng)t=15時,5t2-2t+2的最小值為95所以當(dāng)t=15時,|b-a|的最小值是95=355故為:3558.

若向量,滿足||=||=2,與的夾角為60°,則|+|=()

A.

B.2

C.4

D.12答案:B9.空間中,若向量=(5,9,m),=(1,-1,2),=(2,5,1)共面,則m=()

A.2

B.3

C.4

D.5答案:C10.命題:“若a>0,則a2>0”的否命題是()A.若a2>0,則a>0B.若a<0,則a2<0C.若a≤0,則a2≤0D.若a≤0,則a2≤0答案:否命題是將條件,結(jié)論同時否定,∴若a>0,則a2>0”的否命題是若a≤0,則a2≤0,故為:C11.直線x3+y4=t被兩坐標(biāo)軸截得的線段長度為1,則t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標(biāo)軸截得的線段長度為(3t)2+(4t)2=|5t|=1所以t=±15故為±1512.在極坐標(biāo)系中,過點(diǎn)(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程是______.答案:(22,π4)的直角坐標(biāo)為:(2,2),圓ρ=4sinθ的直角坐標(biāo)方程為:x2+y2-4y=0;顯然,圓心坐標(biāo)(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標(biāo)方程是:ρcosθ=2故為:ρcosθ=213.現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點(diǎn)在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點(diǎn)在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點(diǎn)在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點(diǎn)在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.14.設(shè)a1,a2,…,an為實(shí)數(shù),證明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:證明:不妨設(shè)a1≤a2≤…≤an,則由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.將上述n個式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式兩邊除以n2,并開方可得:a1+a2+…+ann≤a21+a22+…+a2nn.15.已知,,那么P(B|A)等于()

A.

B.

C.

D.答案:B16.某公司一年購買某種貨物400噸,每次都購買x噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲費(fèi)用為4x萬元,要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運(yùn)費(fèi)為4萬元/次,一年的總存儲費(fèi)用為4x萬元,一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最?。蕿椋?0.17.(1+x)6的各二項(xiàng)式系數(shù)的最大值是______.答案:根據(jù)二項(xiàng)展開式的性質(zhì)可得,(1+x)6的各二項(xiàng)式系數(shù)的最大值C36=20故為:2018.雙曲線的漸近線方程是3x±2y=0,則該雙曲線的離心率等于______.答案:∵雙曲線的漸近線方程是3x±2y=0,∴ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=ca=132.:132.19.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個程序,但有2處錯誤,請找出錯誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯誤,應(yīng)改成LOOP

UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1

應(yīng)改為輸出n;20.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.21.已知A(3,-2),B(-5,4),則以AB為直徑的圓的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB為直徑的圓的圓心為(-1,1),半徑r=(-1-3)2+(1+2)2=5,∴圓的方程為(x+1)2+(y-1)2=25故選B.22.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量其中,若且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()

A.

B.

C.

D.

答案:A23.如圖,曲線C1、C2、C3分別是函數(shù)y=ax、y=bx、y=cx的圖象,則()

A.a(chǎn)<b<c

B.a(chǎn)<c<B

C.c<b<a

D.b<c<a

答案:C24.在復(fù)平面內(nèi),復(fù)數(shù)z=sin2+icos2對應(yīng)的點(diǎn)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對應(yīng)的點(diǎn)在第四象限,故選D.25.拋擲3顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點(diǎn)數(shù)和為8的事件包含了向上的點(diǎn)的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點(diǎn)數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點(diǎn)數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點(diǎn)數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點(diǎn)數(shù)和為8的事件的概率是15216=572故為:572.26.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點(diǎn)到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為b>9;故為:b>9.27.“x=2kπ+π4(k∈Z)”是“tanx=1”成立的()A.充分不必要條件B.必要不充分條件C.充分條件D.既不充分也不必要條件答案:tan(2kπ+π4)=tanπ4=1,所以充分;但反之不成立,如tan5π4=1.故選A28.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運(yùn)會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D29.在市場上供應(yīng)的燈泡中,甲廠產(chǎn)品占70%,乙廠占30%,甲廠產(chǎn)品的合格率是95%,乙廠的合格率是80%,則從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是______.答案:由題意知本題是一個相互獨(dú)立事件同時發(fā)生的概率,∵甲廠產(chǎn)品占70%,甲廠產(chǎn)品的合格率是95%,∴從市場上買到一個甲廠生產(chǎn)的合格燈泡的概率是0.7×0.95=0.665故為:0.66530.已知函數(shù)y=f(x)是偶函數(shù),其圖象與x軸有四個交點(diǎn),則f(x)=0的所有實(shí)數(shù)根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對稱∴其圖象與x軸有四個交點(diǎn)也關(guān)于y軸對稱∴方程f(x)=0的所有實(shí)根之和為0故為:031.畫出《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.故《數(shù)學(xué)3》第一章“算法初步”的知識結(jié)構(gòu)圖示意圖如下:32.設(shè)求證:答案:證明見解析解析:證明:∵

∴∴,∴本題利用,對中每項(xiàng)都進(jìn)行了放縮,從而得到可以求和的數(shù)列,達(dá)到化簡的目的。33.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論