2023年內(nèi)蒙古商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年內(nèi)蒙古商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年內(nèi)蒙古商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年內(nèi)蒙古商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年內(nèi)蒙古商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年內(nèi)蒙古商貿(mào)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關(guān)系是()

A.相離

B.相切或相交

C.相交

D.相切答案:C2.某學(xué)校為了解高一男生的百米成績,隨機抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)該圖可以估計出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.

答案:第三和第四個小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績在[13,14]內(nèi)的頻率為:0.7,因為根據(jù)該圖可以估計出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.3.9、從4臺甲型和5臺乙型電視機中任意取出3臺,其中至少要有甲型與乙型電視機各1臺,則不同的取法共有()

A.140種

B.84種

C.70種

D.35種答案:C4.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為()

A.

B.

C.2

D.4答案:A5.△ABC中,∠A外角的平分線與此三角形外接圓相交于P,求證:BP=CP.

答案:證明:∠CBP=∠CAP=∠PAD又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP=∠BCP+∠CBP∴∠BCP=∠CBP,∴BP=CP.6.某校在檢查學(xué)生作業(yè)時,抽出每班學(xué)號尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機抽樣

D.系統(tǒng)抽樣答案:D7.下列輸入語句正確的是()

A.INPUT

x,y,z

B.INPUT“x=”;x,“y=”;y

C.INPUT

2,3,4

D.INPUT

x=2答案:A8.求證:若圓內(nèi)接五邊形的每個角都相等,則它為正五邊形.答案:證明:設(shè)圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個三角形∵OA=OB=OC=OD=OE=半徑,∴有五個等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因為所有內(nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA

(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形9.根據(jù)給出的空間幾何體的三視圖,用斜二側(cè)畫法畫出它的直觀圖.答案:畫法:(1)畫軸如下圖,畫x軸、y軸、z軸,三軸相交于點O,使∠xOy=45°,∠xOz=90°.(2)畫圓臺的兩底面畫出底面⊙O假設(shè)交x軸于A、B兩點,在z軸上截取O′,使OO′等于三視圖中相應(yīng)高度,過O′作Ox的平行線O′x′,Oy的平行線O′y′利用O′x′與O′y′畫出底面⊙O′,設(shè)⊙O′交x′軸于A′、B′兩點.(3)成圖連接A′A、B′B,去掉輔助線,將被遮擋的部分要改為虛線,即得到給出三視圖所表示的直觀圖.10.橢圓x=5cosαy=3sinα(α是參數(shù))的一個焦點到相應(yīng)準(zhǔn)線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標(biāo)準(zhǔn)方程為:x225+y29=1,它的右焦點(4,0),右準(zhǔn)線方程為:x=254.一個焦點到相應(yīng)準(zhǔn)線的距離為:254-4=94.故為:94.11.如圖是一個實物圖形,則它的左視圖大致為()A.

B.

C.

D.

答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對角線的矩形,并且對角線在左視圖中為實線,故選D.12.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.13.若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)?(b1+b2+…+bnn).當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時等號成立.答案:證明不妨設(shè)a1≤a2≤…≤an,b1≥b2≥…≥bn.則由排序原理得:a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbna1b1+a2b2+…+anbn≤a1b2+a2b3+…+anb1a1b1+a2b2+…+anbn≤a1b3+a2b4+…+an-1b1+anb2…a1b1+a2b2+…+anbn≤a1bn+a2b1+…+anbn-1.將上述n個式子相加,得:n(a1b1+a2b2+…+anbn)≤(a1+a2+…+an)(b1+b2+…+bn)上式兩邊除以n2,得:a1b1+a2b2+…+anbnn≤(a1+a2+…+ann)(b1+b2+…+bnn)等號當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時成立.14.(選做題)某制藥企業(yè)為了對某種藥用液體進(jìn)行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進(jìn)行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(

)。答案:715.直線y=3x+1的斜率是()A.1B.2C.3D.4答案:因為直線y=3x+1是直線的斜截式方程,所以直線的斜率是3.故選C.16.某程序框圖如圖所示,若a=3,則該程序運行后,輸出的x值為______.答案:由題意,x的初值為1,每次進(jìn)行循環(huán)體則執(zhí)行乘二加一的運算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.17.在空間直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)A(,,),B(,,0),C(

,,),則(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C18.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C19.求圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))的圓心坐標(biāo),和圓C關(guān)于直線x-y=0對稱的圓C′的普通方程.答案:圓Cx=3+4cosθy=-2+4sinθ(θ為參數(shù))

(x-3)2+(y+2)2=16,表示圓心坐標(biāo)(3,-2),半徑等于4的圓.C(3,-2)關(guān)于直線x-y=0對稱的點C′(-2,3),半徑還是4,故圓C′的普通方程(x+2)2+(y-3)2=16.20.以下關(guān)于排序的說法中,正確的是(

)A.排序就是將數(shù)按從小到大的順序排序B.排序只有兩種方法,即直接插入排序和冒泡排序C.用冒泡排序把一列數(shù)從小到大排序時,最小的數(shù)逐趟向上漂浮D.用冒泡排序把一列數(shù)從小到大排序時,最大的數(shù)逐趟向上漂浮答案:C解析:由冒泡排序的特點知C正確.21.在莖葉圖中,樣本的中位數(shù)為______,眾數(shù)為______.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1222.設(shè)ABC是坐標(biāo)平面上的一個三角形,P為平面上一點且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C23.已知關(guān)于的不等式的解集為,且,求的值答案:,,解析:用數(shù)形結(jié)合法,如圖顯然解集是,即,從而此時=與交點橫坐標(biāo)為5,從而縱坐標(biāo)為4,將交點坐標(biāo)代入可得所以,,24.設(shè)O是坐標(biāo)原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一點,F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p25.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.26.若A是圓x2+y2=16上的一個動點,過點A向y軸作垂線,垂足為B,則線段AB中點C的軌跡方程為()

A.x2+2y2=16

B.x2+4y2=16

C.2x2+y2=16

D.4x2+y2=16答案:D27.已知空間向量a=(1,2,3),點A(0,1,0),若AB=-2a,則點B的坐標(biāo)是()A.(-2,-4,-6)B.(2,4,6)C.(2,3,6)D.(-2,-3,-6)答案:設(shè)B=(x,y,z),因為AB=-2a,所以(x,y-1,z)=-2(1,2,3),所以:x=-2,y-1=-4,z=-6,即x=-2,y=-3,z=-6.B(-2,-3,-6).故選D.28.某超市推出如下優(yōu)惠方案:

(1)一次性購物不超過100元不享受優(yōu)惠;

(2)一次性購物超過100元但不超過300元的一律九折;

(3)一次性購物超過300元的一律八折,有人兩次購物分別付款80元,252元.

如果他一次性購買與上兩次相同的商品,則應(yīng)付款______.答案:該人一次性購物付款80元,據(jù)條件(1)、(2)知他沒有享受優(yōu)惠,故實際購物款為80元;另一次購物付款252元,有兩種可能,其一購物超過300元按八折計,則實際購物款為2520.8=315元.其二購物超過100元但不超過300元按九折計算,則實際購物款為2520.9=280元.故該人兩次購物總價值為395元或360元,若一次性購買這些商品應(yīng)付款316元或288元.故為316元或288元.29.某程序圖如圖所示,該程序運行后輸出的結(jié)果是______.答案:由圖知運算規(guī)則是對S=2S,故第一次進(jìn)入循環(huán)體后S=21,第二次進(jìn)入循環(huán)體后S=22=4,第三次進(jìn)入循環(huán)體后S=24=16,第四次進(jìn)入循環(huán)體后S=216>2012,退出循環(huán).故該程序運行后輸出的結(jié)果是:k=4+1=5.故為:530.參數(shù)方程x=sinθ+cosθy=sinθ?cosθ化為普通方程是______.答案:把x=sinθ+cosθy=sinθ?cosθ利用同角三角函數(shù)的基本關(guān)系消去參數(shù)θ,化為普通方程可得x2=1+2y,故為x2=1+2y.31.已知P為x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,則PF2+PF1=______.答案:∵x24+y29=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點,∴根據(jù)橢圓的定義,可得|PF2|+|PF1|=2×2=4故為:432.設(shè)直線過點(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為()

A.±

B.±2

C.±2

D.±4答案:B33.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設(shè)圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長為222-(2)2=22,故為22.34.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:

(Ⅱ)將(x、y)用為點P的坐標(biāo),(x'、y')作為點Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標(biāo)為(3,2),試求點P的坐標(biāo);

(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.答案:(I)由題設(shè)得,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0?.z,∴x′+y′i=.(1-3i)?.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由復(fù)數(shù)相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和題意得,x+3y=33x-y=2,解得x=343y=14

,即P點的坐標(biāo)為(343,14).

(Ⅲ)∵直線y=kx上的任意點P(x,y),其經(jīng)變換后的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵當(dāng)k=0時,y=0,y=3x不是同一條直線,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-335.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點A,PB交圓于點D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,336.如圖表示空間直角坐標(biāo)系的直觀圖中,正確的個數(shù)為()

A.1個

B.2個

C.3個

D.4個答案:C37.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個數(shù)據(jù)中位數(shù)為45乙組共9個數(shù)據(jù)中位數(shù)為46故為45、4638.點P(1,3,5)關(guān)于平面xoz對稱的點是Q,則向量=()

A.(2,0,10)

B.(0,-6,0)

C.(0,6,0)

D.(-2,0,-10)答案:B39.已知空間四邊形ABCD中,M、G分別為BC、CD的中點,則等于()

A.

B.

C.

D.

答案:A40.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費用y(萬元)的幾組統(tǒng)計數(shù)據(jù):

x23456y2.23.85.56.57.0(1)請在給出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程

y=

bx+

a;

(3)估計使用年限為10年時,維修費用為多少?

(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對應(yīng)的點的坐標(biāo),寫出點的坐標(biāo),在坐標(biāo)系描出點,得到散點圖,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當(dāng)x=10時,y=1.23×10+0.08=12.38,所以估計當(dāng)使用10年時,維修費用約為12.38萬元.41.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

則r的坐標(biāo)為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)42.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1543.下列特殊命題中假命題的個數(shù)是()

①有的實數(shù)是無限不循環(huán)小數(shù);

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3答案:B44.如圖是容量為150的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為()A.12B.48C.60D.80答案:根據(jù)頻率分布直方圖,樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為0.08×4×150=48故選B.45.在空間坐標(biāo)中,點B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點,則|OB|等于()

A.

B.

C.2

D.答案:B46.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()

A.0.008

B.0.488

C.0.096

D.0.104答案:D47.(幾何證明選講選做題)

如圖,已知AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長是______.答案:∵AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故為:22.48.(坐標(biāo)系與參數(shù)方程選做題)點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為______.答案:設(shè)點Q(t2,2t)為曲線上的任意一點,則|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,當(dāng)且僅當(dāng)t=0取等號,此時Q(0,0).故點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為3.故為3.49.過點P(3,0)作一直線,它夾在兩條直線l1:2x-y-3=0,l2:x+y+3=0之間的線段恰被點P平分,該直線的方程是()

A.4x-y-6=0

B.3x+2y-7=0

C.5x-y-15=0

D.5x+y-15=0答案:C50.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此

a+b表示向北偏東30°方向航行2km.故選B.第2卷一.綜合題(共50題)1.某項選拔共有四輪考核,每輪設(shè)有一個問題,能正確回答問題者進(jìn)入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.

(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.2.欲對某商場作一簡要審計,通過檢查發(fā)票及銷售記錄的2%來快速估計每月的銷售總額.現(xiàn)采用如下方法:從某本50張的發(fā)票存根中隨機抽一張,如15號,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.這種抽取樣本的方法是()A.簡單隨機抽樣B.系統(tǒng)抽樣C.分層抽樣D.其它方式的抽樣答案:∵總體的個體比較多,抽樣時某本50張的發(fā)票存根中隨機抽一張,如15號,這是系統(tǒng)抽樣中的分組,然后按序往后將65號,115號,165號,…發(fā)票上的銷售額組成一個調(diào)查樣本.故選B.3.直線x=-2+ty=1-t(t為參數(shù))被圓x=2+2cosθy=-1+2sinθ(θ為參數(shù))所截得的弦長為______.答案:∵圓x=2+2cosθy=-1+2sinθ(θ為參數(shù)),消去θ可得,(x-2)2+(y+1)2=4,∵直線x=-2+ty=1-t(t為參數(shù)),∴x+y=-1,圓心為(2,-1),設(shè)圓心到直線的距離為d=|2-1+1|2=2,圓的半徑為2∴截得的弦長為222-(2)2=22,故為22.4.傾斜角為60°的直線的斜率為______.答案:因為直線的傾斜角為60°,所以直線的斜率k=tan60°=3.故為:3.5.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|

)在∠AOB平分線線上,∴t(a|a|+b|b|

)在∠AOB平分線線上,∴則點P一定在∠AOB平分線線上,故選A.6.化簡5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故為:2a-2b7.直線2x-y=7與直線3x+2y-7=0的交點是()

A.(3,-1)

B.(-1,3)

C.(-3,-1)

D.(3,1)答案:A8.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()

A.3

B.4

C.5

D.6答案:C9.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(

A.10組

B.9組

C.8組

D.7組答案:B10.用秦九韶算法求多項式

在的值.答案:.解析:可根據(jù)秦九韶算法原理,將所給多項式改寫,然后由內(nèi)到外逐次計算即可.

而,所以有,,,,,.即.【名師指引】利用秦九韶算法計算多項式值關(guān)鍵是能正確地將所給多項式改寫,然后由內(nèi)到外逐次計算,由于后項計算需用到前項的結(jié)果,故應(yīng)認(rèn)真、細(xì)心,確保中間結(jié)果的準(zhǔn)確性.11.已知,,且與垂直,則實數(shù)λ的值為()

A.±

B.1

C.-

D.答案:D12.(本題10分)設(shè)函數(shù)的定義域為A,的定義域為B.(1)求A;

(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略13.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此

a+b表示向北偏東30°方向航行2km.故選B.14.求證:菱形各邊中點在以對角線的交點為圓心的同一個圓上.答案:已知:如圖,菱形ABCD的對角線AC和BD相交于點O.求證:菱形ABCD各邊中點M、N、P、Q在以O(shè)為圓心的同一個圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點,∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點在以O(shè)為圓心OM為半徑的圓上.所以菱形各邊中點在以對角線的交點為圓心的同一個圓上.15.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α16.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為()

A.0.9

B.0.5

C.0.6

D.0.8答案:D17.若復(fù)數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實數(shù)a的值為______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復(fù)數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:1218.從甲、乙兩人手工制作的圓形產(chǎn)品中,各自隨機抽取6件,測得其直徑如下(單位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

據(jù)以上數(shù)據(jù)估計兩人的技術(shù)穩(wěn)定性,結(jié)論是()

A.甲優(yōu)于乙

B.乙優(yōu)于甲

C.兩人沒區(qū)別

D.無法判斷答案:A19.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求實數(shù)k的取值范圍.答案:令f(x)=x2-(k2-9)x+k2-5k+6,則∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0

且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.20.已知單位向量a,b的夾角為,那么|a+2b|=()

A.2

B.

C.2

D.4答案:B21.(每題6分共12分)解不等式

(1)(2)答案:(1)(2)解析:本試題主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解運用。(1)移向,通分,合并,將分式化為整式,然后得到解集。(2)首先分析函數(shù)式有意義的x的取值,然后保證兩邊都有意義的時候,且都為正,兩邊平方求解得到。解:(2)當(dāng)8-x<0顯然成立。當(dāng)8-x》0時,則兩邊平方可得。所以22.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當(dāng)cost=0,sint=1時,s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當(dāng)cost=1,sint=0時,s=cost+isint=1則f(s)=1+s+s2+…sn=n+123.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.24.已知矩陣M=2a21,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0)

(1)求實數(shù)a的值;

(2)求矩陣M的特征值及其對應(yīng)的特征向量.答案:(1)由2a211-2=-40,∴2-2a=-4?a=3.(2)由(1)知M=2321,則矩陣M的特征多項式為f(λ)=.λ-2-3-2λ-1.=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩陣M的特征值為-1與4.當(dāng)λ=-1時,(λ-2)x-3y=0-2x+(λ-1)y=0?x+y=0∴矩陣M的屬于特征值-1的一個特征向量為1-1;當(dāng)λ=4時,(λ-2)x-3y=0-2x+(λ-1)y=0?2x-3y=0∴矩陣M的屬于特征值4的一個特征向量為32.25.已知隨機變量ξ服從正態(tài)分布N(1,δ2)(δ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為(

A.

B.

C.

D.答案:D26.如圖,一個正方體內(nèi)接于一個球,過球心作一個截面,則截面的可能圖形為(

A.①③

B.②④

C.①②③

D.②③④答案:C27.某校高一年級8個班參加合唱比賽的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)是______.答案:由莖葉圖可知樣本數(shù)據(jù)共有8個,按照從小到大的順序為:87,89,90,91,92,93,94,96.出現(xiàn)在中間兩位的數(shù)據(jù)是91,92.所以樣本的中位數(shù)是(91+92)÷2=91.5,故為:91.528.用冒泡法對43,34,22,23,54從小到大排序,需要(

)趟排序。

A.2

B.3

C.4

D.5答案:A29.已知圓C:x2+y2-4x-5=0.

(1)過點(5,1)作圓C的切線,求切線的方程;

(2)若圓C的弦AB的中點P(3,1),求AB所在直線方程.答案:由C:x2+y2-4x-5=0得圓的標(biāo)準(zhǔn)方程為(x-2)2+y2=9-----------(2分)(1)顯然x=5為圓的切線.------------------------(4分)另一方面,設(shè)過(5,1)的圓的切線方程為y-1=k(x-5),即kx-y+1-5k=0;所以d=|2k-5k+1|k2+1=3,解得k=-43于是切線方程為4x+3y-23=0和x=5.------------------------(7分)(2)設(shè)所求直線與圓交于A,B兩點,其坐標(biāo)分別為(x1,y1)B(x2,y2)則有(x1-2)2+y21=9(x2-2)2+y22=9兩式作差得(x1+x2-4)(x2-x1)+(y2+y1)(y2-y1)=0--------------(10分)因為圓C的弦AB的中點P(3,1),所以(x2+x1)=6,(y2+y1)=2

所以y2-y1x2-x1=-1,故所求直線方程為

x+y-4=0-----------------(14分)30.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時,y=10x=10,得x=1;當(dāng)x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.31.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為()

A.內(nèi)切

B.相交

C.外切

D.相離答案:B32.曲線與坐標(biāo)軸的交點是(

)A.B.C.D.答案:B解析:當(dāng)時,,而,即,得與軸的交點為;當(dāng)時,,而,即,得與軸的交點為33.點B是點A(1,2,3)在坐標(biāo)平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B34.如圖所示的方格紙中有定點O,P,Q,E,F(xiàn),G,H,則=()

A.

B.

C.

D.

答案:C35.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點P是以M(-2,0),N(2,0)為兩焦點的雙曲線的右支.故選B.36.已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.

(Ⅰ)求曲線C的方程;

(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA,EB,切點為A、B.

(?。┣笞C:直線AB恒過一定點,并求出該定點的坐標(biāo);

(ⅱ)在直線l上是否存在一點E,使得△ABM為等邊三角形(M點也在直線l上)?若存在,求出點E坐標(biāo),若不存在,請說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(0,2)(10分)(ⅱ)由(?。┲狝B中點N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時,則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時E(±2,-2),當(dāng)a=0時,經(jīng)檢驗不存在滿足條件的點E綜上可得:滿足條件的點E存在,坐標(biāo)為E(±2,-2).(15分)37.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因為直線的斜率是其傾斜角的正切值,當(dāng)傾斜角大于90°小于180°時,斜率為負(fù)值,當(dāng)傾斜角大于0°小于90°時斜率為正值,且正切函數(shù)在(0°,90°)上為增函數(shù),由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.38.給出下列四個命題,其中正確的一個是()

A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報變量對解釋變量的貢獻(xiàn)率是80%

B.在獨立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關(guān)系成立的可能性就越大

C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越差

D.隨機誤差e是衡量預(yù)報精確度的一個量,它滿足E(e)=0答案:D39.復(fù)數(shù)32i+11-i的虛部是______.答案:復(fù)數(shù)32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復(fù)數(shù)的虛部是2,故為:240.在空間直角坐標(biāo)系中,已知點A(1,0,2),B(1,-3,1),點M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).41.如圖是從甲、乙兩個班級各隨機選出9名同學(xué)進(jìn)行測驗成績的莖葉圖,從圖中看,平均成績較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學(xué)成績:46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學(xué)成績:57,62,65,75,79,81,84,87,89.∴甲平均成績?yōu)?9;乙平均成績?yōu)?5;故為:乙.42.已知向量=(1,1,-2),=(2,1,),若≥0,則實數(shù)x的取值范圍為()

A.(0,)

B.(0,]

C.(-∞,0)∪[,+∞)

D.(-∞,0]∪[,+∞)答案:C43.若平面α與β的法向量分別是a=(1,0,-2),b=(-1,0,2),則平面α與β的位置關(guān)系是()A.平行B.垂直C.相交不垂直D.無法判斷答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分別是平面α與β的法向量∴平面α與β的法向量平行,可得平面α與β互相平行.44.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個年級的學(xué)生中隨機抽取n名學(xué)生進(jìn)行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()

A.10

B.9

C.8

D.7答案:A45.在平面直角坐標(biāo)系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O為坐標(biāo)原點),求向量OB;

(2)若向量AC與向量a共線,當(dāng)k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當(dāng)t=8時,n=24;當(dāng)t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當(dāng)sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.46.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點,且OA⊥OB,OA=2,C為OA的中點,連接BC并延長交圓O于點D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點,∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.47.從一批羽毛球產(chǎn)品中任取一個,質(zhì)量小于4.8

g的概率是0.3,質(zhì)量不小于4.85

g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()

A.0.62

B.0.38

C.0.7

D.0.68答案:B48.對任意實數(shù)x,y,定義運算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運算為通常的實數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個非零實數(shù)m,使得對于任意的實數(shù)都有x*m=x,則d的值為(

A.4

B.1

C.0

D.不確定答案:A49.一個多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A50.已知F1(-2,0),F(xiàn)2(2,0)兩點,曲線C上的動點P滿足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲線C的方程;

(Ⅱ)若直線l經(jīng)過點M(0,3),交曲線C于A,B兩點,且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲線C是以F1,F(xiàn)2為焦點,長軸長為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設(shè)A(x1,y1),B(x2,y2),由條件可知A為MB的中點,則有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設(shè)其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設(shè)A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因為MA=12MB,所以A為MB的中點,從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.第3卷一.綜合題(共50題)1.以A(1,5)、B(5,1)、C(-9,-9)為頂點的三角形是()

A.等邊三角形

B.等腰三角形

C.不等邊三角形

D.直角三角形答案:B2.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____3.下面的結(jié)構(gòu)圖,總經(jīng)理的直接下屬是()

A.總工程師和專家辦公室

B.開發(fā)部

C.總工程師、專家辦公室和開發(fā)部

D.總工程師、專家辦公室和所有七個部答案:C4.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標(biāo)原點,n∈N*.已知OP1=(2,0),則OP2011的坐標(biāo)為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標(biāo)不變,縱坐標(biāo)構(gòu)成以0為首項,2為公差的等差數(shù)列∴OP2011的坐標(biāo)為(2,4020)故為:(2,4020)5.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.6.在平面直角坐標(biāo)系xOy中,點P(x,y)是橢圓x23+y2=1上的一個動點,求S=x+y的最大值.答案:因橢圓x23+y2=1的參數(shù)方程為x=3cos?y=sin?(?為參數(shù))故可設(shè)動點P的坐標(biāo)為(3cos?,sin?),其中0≤?<2π.因此S=x+y=3cos?+sin?=2(32cos?+12sin?)=2sin(?+π3)所以,當(dāng)?=π6時,S取最大值2.7.把矩陣變?yōu)楹?,與對應(yīng)的值是()

A.

B.

C.

D.答案:C8.將一個等腰梯形繞著它的較長的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體是(

)答案:B9.如圖為某平面圖形用斜二測畫法畫出的直觀圖,則其原來平面圖形的面積是(

A.4

B.

C.

D.8

答案:A10.直線3x+5y-1=0與4x+3y-5=0的交點是()

A.(-2,1)

B.(-3,2)

C.(2,-1)

D.(3,-2)答案:C11.①某尋呼臺一小時內(nèi)收到的尋呼次數(shù)X;

②長江上某水文站觀察到一天中的水位X;

③某超市一天中的顧客量X.

其中的X是連續(xù)型隨機變量的是()

A.①

B.②

C.③

D.①②③答案:B12.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(

A.2

B.1

C.0

D.-1答案:D13.拋擲兩顆骰子,所得點數(shù)之和為ξ,那么ξ=4表示的隨機試驗結(jié)果是()

A.一顆是3點,一顆是1點

B.兩顆都是2點

C.兩顆都是4點

D.一顆是3點,一顆是1點或兩顆都是2點答案:D14.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A15.用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,假設(shè)正確的是()

A.假設(shè)三內(nèi)角都不大于60度

B.假設(shè)三內(nèi)角都大于60度

C.假設(shè)三內(nèi)角至多有一個大于60度

D.假設(shè)三內(nèi)角至多有兩個大于60度答案:B16.如圖,正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F

是棱CD上的動點.

(Ⅰ)試確定點F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當(dāng)D1E⊥平面AB1F時,求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大?。鸢福海↖)由題意可得:以A為原點,分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當(dāng)點F是CD的中點時,D1E⊥平面AB1F.(II)當(dāng)D1E⊥平面AB1F時,F(xiàn)是CD的中點,F(xiàn)(12,1,0)由正方體的結(jié)構(gòu)特征可得:平面AEF的一個法向量為m=(0,0,1),設(shè)平面C1EF的一個法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n

=0,即y=-2zx=y,所以取平面C1EF的一個法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因為當(dāng)把m,n都移向這個二面角內(nèi)一點時,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因為BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.17.b1是[0,1]上的均勻隨機數(shù),b=3(b1-2),則b是區(qū)間______上的均勻隨機數(shù).答案:∵b1是[0,1]上的均勻隨機數(shù),b=3(b1-2)∵b1-2是[-2,-1]上的均勻隨機數(shù),∴b=3(b1-2)是[-6,-3]上的均勻隨機數(shù),故為:[-6,-3]18.如圖,AB是半圓O的直徑,C、D是半圓上的兩點,半圓O的切線PC交AB的延長線于點P,∠PCB=25°,則∠ADC為()

A.105°

B.115°

C.120°

D.125°

答案:B19.(幾何證明選講)如圖,點A、B、C都在⊙O上,過點C的切線交AB的延長線于點D,若AB=5,BC=3,CD=6,則線段AC的長為______.答案:∵過點C的切線交AB的延長線于點D,∴DC是圓的切線,DBA是圓的割線,根據(jù)切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.520.有3名同學(xué)要爭奪2個比賽項目的冠軍,冠軍獲得者共有______種可能.答案:第一個項目的冠軍有3種情況,第二個項目的冠軍也有3種情況,根據(jù)分步計數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.21.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C22.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.據(jù)有關(guān)報道,2009年8月15日至8

月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對這500人血液中酒精含量進(jìn)行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車,通過頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.23.若關(guān)于x的不等式(1+k2)x≤k4+4的解集是M,則對任意實常數(shù)k,總有(

A.

B.

C.

D.,0∈M答案:A24.在平面直角坐標(biāo)系xOy中,若拋物線C:x2=2py(p>0)的焦點為F(q,1),則p+q=______.答案:拋物線C:x2=2py(p>0)的焦點坐標(biāo)為(0,p2),又已知焦點為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.25.如圖所示,設(shè)k1,k2,k3分別是直線l1,l2,l3的斜率,則()

A.k1<k2<k3

B.k3<k1<k2

C.k3<k2<k1

D.k1<k3<k2

答案:C26.不等式的解集

.答案:;解析:略27.求證:不論λ取什么實數(shù)時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個定點,并求出這個定點的坐標(biāo).答案:證明:直線(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根據(jù)λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不論λ取什么實數(shù)時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個定點(2,-3).28.已知等差數(shù)列{an}的前n項和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點共線(該直線不過點O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點共線,則a100+a101=1,等差數(shù)列前n項的和為Sn=(a1+an)?n

2,∴S200=(a1+a200)×200

2=(a100+

a101)×2002=100,故為100.29.已知拋物線C1:x2=2py(p>0)上縱坐標(biāo)為p的點到其焦點的距離為3.

(Ⅰ)求拋物線C1的方程;

(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設(shè)拋物線C1在點A,B處的切線交于點M,

(?。┣簏cM的軌跡C2的方程;

(ⅱ)若點Q為(?。┲星€C2上的動點,當(dāng)直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.

…(5分)(Ⅱ)(?。┰O(shè)過點P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點M的軌跡C2的方程為y=2

(x<-22或x>22).…(10分)(ⅱ)設(shè)Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.

…(15分)30.已知l∥α,且l的方向向量為(2,-8,1),平面α的法向量為(1,y,2),則y=______.答案:∵l∥α,∴l(xiāng)的方向向量(2,-8,1)與平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故為12.31.8的值為()

A.2

B.4

C.6

D.8答案:B32.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.33.設(shè)雙曲線C:x2a2-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A、B.

(I)求雙曲線C的離心率e的取值范圍:

(II)設(shè)直線l與y軸的交點為P,且PA=512PB.求a的值.答案:(I)由C與l相交于兩個不同的點,故知方程組x2a2-y2=1x+y=1.有兩個不同的實數(shù)解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①所以1-a2≠0.4a4+8a2(1-a2)>0.解得0<a<2且a≠1.雙曲線的離心率e=1+a2a=1a2+1.∵0<a<2且a≠1,∴e>62且e≠2即離心率e的取值范圍為(62,2)∪(2,+∞).(II)設(shè)A(x1,y1),B(x2,y2),P(0,1)∵PA=512PB,∴(x1,y1-1)=512(x2,y2-1).由此得x1=512x2.由于x1和x2都是方程①的根,且1-a2≠0,所以1712x2=-2a21-a2.x1?x2=512x22=-2a21-a2.消去x2,得-2a21-a2=28960由a>0,所以a=1713.34.現(xiàn)有以下兩項調(diào)查:①某校高二年級共有15個班,現(xiàn)從中選擇2個班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項調(diào)查宜采用的抽樣方法依次是()A.簡單隨機抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡單隨機抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個班中選擇2個班,檢查其清潔衛(wèi)生狀況;總體個數(shù)不多,而且差異不大,故可采用簡單隨機抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項調(diào)查宜采用的抽樣方法依次是簡單隨機抽樣法,分層抽樣法故選A35.根據(jù)給出的程序語言,畫出程序框圖,并計算程序運行后的結(jié)果.

答案:程序框圖:模擬程序運行:當(dāng)j=1時,n=1,當(dāng)j=2時,n=1,當(dāng)j=3時,n=1,當(dāng)j=4時,n=2,…當(dāng)j=8時,n=2,…當(dāng)j=11時,n=2,當(dāng)j=12時,此時不滿足循環(huán)條件,退出循環(huán)程序運行后的結(jié)果是:2.36.如圖所示,O點在△ABC內(nèi)部,D、E分別是AC,BC邊的中點,且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()

A.2

B.

C.3

D.

答案:B37.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k

2=16+6k104+k

2.解得k=2,故為2.38.設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論