版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年曲靖職業(yè)技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展開式中,一共有多少項?答案:因為:從第一個括號中選一個字母有3種方法,從第二個括號中選一個字母有4種方法,從第三個括號中選一個字母有5種方法.故根據乘法計數原理可知共有N=3×4×5=60(項).2.已知兩個函數f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:
表1:
x123f(x)231表2:
x123g(x)321則方程g[f(x)]=x的解集為______.答案:由題意得,當x=1時,g[f(1)]=g[2]=2不滿足方程;當x=2時,g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}3.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據題意可知:當(m,n)運動到原點與已知直線作垂線的垂足位置時,m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據勾股定理得:c2=a2+b2,所以原點(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.4.不等式|x-2|+|x+1|<5的解集為()
A.(-∞,-2)∪(3,+∞)
B.(-∞,-1)∪(2,+∞)
C.(-2,3)
D.(-∞,+∞)答案:C5.由1、2、3可以組成______個沒有重復數字的兩位數.答案:沒有重復數字的兩位數共有3×2=6個故為:66.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標準方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.7.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.8.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點P,PD=2a3,∠OAP=30°,則CP=______.答案:因為點P是AB的中點,由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.9.設集合A和B都是自然數集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C10.如圖,⊙O與⊙O′交于
A,B,⊙O的弦AC與⊙O′相切于點A,⊙O′的弦AD與⊙O相切于A點,則下列結論中正確的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.無法確定
答案:B11.從一批羽毛球產品中任取一個,質量小于4.8
g的概率是0.3,質量不小于4.85
g的概率是0.32,那么質量在[4.8,4.85)g范圍內的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B12.已知f(x)=2x,g(x)=3x.
(1)當x為何值時,f(x)=g(x)?
(2)當x為何值時,f(x)>1?f(x)=1?f(x)<1?
(3)當x為何值時,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(0,1),且這兩個圖象只有一個公共點,∴當x=0時,f(x)=g(x)=1.(2)由圖可知,當x>0時,f(x)>1;當x=0時,f(x)=1;當x<0時,f(x)<1.(3)由圖可知:當x>1時,g(x)>3;當x=1時,g(x)=3;當x<1時,g(x)<3.13.如圖,梯形ABCD內接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數是
______.答案:∵DO平分∠ADC,∴∠CDO=∠ODA;∵OD=OA,∴∠A=∠ADO=12∠ADC;∵AB∥CD,∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.故為:60°14.如圖,AB是圓O的直徑,CD是圓O的弦,AB與CD交于E點,且AE:EB=3:1、CE:ED=1:1,CD=83,則直徑AB的長為______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故為:1615.若x~N(2,σ2),P(0<x<4)=0.8,則P(0<X<2)=______.答案:∵X~N(2,σ2),∴正態(tài)曲線關于x=2對稱,∵P(0<X<4)=0.8,∴P(0<X<2)=12P(0<X<4)=0.4,故為:0.4.16.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C17.在邊長為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.18.已知a,b,c為正數,且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.19.下列賦值語句中正確的是()
A.m+n=3
B.3=i
C.i=i2+1
D.i=j=3答案:C20.證明:已知a與b均為有理數,且a和b都是無理數,證明a+b也是無理數.答案:證明:假設a+b是有理數,則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數21.已知直線l1:3x-y+2=0,l2:3x+3y-5=0,則直線l1與l2的夾角是______.答案:因為直線l1的斜率為3,故傾斜角為60°,直線l2的斜率為-3,傾斜角為120°,故兩直線的夾角為60°,即兩直線的夾角為π3,故為
π3.22.若有以下說法:
①相等向量的模相等;
②若a和b都是單位向量,則a=b;
③對于任意的a和b,|a+b|≤|a|+|b|恒成立;
④若a∥b,c∥b,則a∥c.
其中正確的說法序號是()A.①③B.①④C.②③D.③④答案:根據定義,大小相等且方向相同的兩個向量相等.因此相等向量的模相等,故①正確;因為單位向量的模等于1,而方向不確定.所以若a和b都是單位向量,則不一定有a=b成立,故②不正確;根據向量加法的三角形法則,可得對于任意的a和b,都有|a+b|≤|a|+|b|成立,當且僅當a和b方向相同時等號成立,故③正確;若b=0,則有a∥b且c∥b,但是a∥c不成立,故④不正確.綜上所述,正確的命題是①③故選:A23.構成多面體的面最少是(
)
A.三個
B.四個
C.五個
D.六個答案:B24.點M,N分別是曲線ρsinθ=2和ρ=2cosθ上的動點,則|MN|的最小值是______.答案:∵曲線ρsinθ=2和ρ=2cosθ分別為:y=2和x2+y2=2x,即直線y=2和圓心在(1,0)半徑為1的圓.顯然|MN|的最小值為1.故為:1.25.若定義在正整數有序對集合上的二元函數f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D26.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點D,則圖中共有直角三角形的個數是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.27.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+
(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當且僅當t=15時,5t2-2t+2的最小值為95所以當t=15時,|b-a|的最小值是95=355故為:35528.以拋物線y2=2px(p>0)的焦半徑|PF|為直徑的圓與y軸位置關系是______.答案:根據拋物線定義可知|PF|=p2,而圓的半徑為p2,圓心為(p2,0),|PF|正好等于所求圓的半徑,進而可推斷圓與y軸位置關系是相切.29.H:x-y+z=2為坐標空間中一平面,L為平面H上的一直線.已知點P(2,1,1)為L上距離原點O最近的點,則______為L的方向向量.答案:∵x-y+z=2為坐標空間中一平面∴平面的一個法向量是n=(1,-1,1)設直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點O最近的點,∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)30.在正方形ABCD中,已知它的邊長為1,設=,=,=,則|++|的值為(
)
A.0
B.3
C.2+
D.2答案:D31.已知點A分BC所成的比為-13,則點B分AC所成的比為______.答案:由已知得B是AC的內分點,且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.32.滿足{1,2}∪A={1,2,3}的集合A的個數為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數為4.33.關于生活中的圓錐曲線,有下面幾個結論:
(1)標準田徑運動場的內道是一個橢圓;
(2)接受衛(wèi)星轉播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線;
(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線;
(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.
其中正確命題的序號是______(把你認為正確命題的序號都填上).答案:(1)標準田徑運動場的內道是有直道和彎道部分是半圓組成,不是橢圓.故錯誤(2)接受衛(wèi)星轉播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線.故正確.(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.故正確.故為:(2)(3)(4)34.(不等式選講)
已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:
,
相加得:左3……………(10分)35.若=(2,-3,1)是平面α的一個法向量,則下列向量中能作為平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D36.已知矩陣A=b-2-7a的逆矩陣是B=a273,則a+b=______.答案:根據矩陣A=b-2-7a的逆矩陣是B=a273,得a273b-2-7a=1001,∴ab-14=1-2a+2a=07b-21=0-14+3a=1,解得a=5b=3∴a+b=8.故為:8.37.已知復數z=2+i,則z2對應的點在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,則z2=(2+i)2=22+4i+i2=3+4i.所以,復數z2的實部等于3,虛部等于4.所以z2對應的點在第Ⅰ象限.故選A.38.若數列{an}是等差數列,對于bn=1n(a1+a2+…+an),則數列{bn}也是等差數列.類比上述性質,若數列{cn}是各項都為正數的等比數列,對于dn>0,則dn=______時,數列{dn}也是等比數列.答案:在類比等差數列的性質推理等比數列的性質時,我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術平均數類比推理為幾何平均數等,故我們可以由數列{cn}是等差數列,則對于bn=1n(a1+a2+…+an),則數列{bn}也是等差數列.類比推斷:若數列{cn}是各項均為正數的等比數列,則當dn=nC1C2C3Cn時,數列{dn}也是等比數列.故為:nC1C2C3Cn39.在(1+2x)5的展開式中,x2的系數等于______.(用數字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數等于C25×22=40,故為40.40.若直線y=x+b與圓x2+y2=2相切,則b的值為(
)
A.±4
B.±2
C.±
D.±2
答案:B41.如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=6.
(1)求證:PA⊥B1D1;
(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.答案:以D1為原點,D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標系,則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)證明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP?D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量為AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).設平面PAD的法向量為n=(x,y,z),則n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),設所求銳二面角為θ,則cosθ=|n?AC||n|?|AC|=|0-4+0|22×5=105.42.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C43.已知不等式a≤對x取一切負數恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對x取一切負數恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.44.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數,則方程沒有整數根”正確的假設是方程存在實數根x0為()
A.整數
B.奇數或偶數
C.正整數或負整數
D.自然數或負整數答案:A45.已知圓柱的軸截面周長為6,體積為V,則下列關系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當且僅當r=h時取等號,由此可得V≤π恒成立故選:B46.用反證法證明命題:“三角形的內角至多有一個鈍角”,正確的假設是()
A.三角形的內角至少有一個鈍角
B.三角形的內角至少有兩個鈍角
C.三角形的內角沒有一個鈍角
D.三角形的內角沒有一個鈍角或至少有兩個鈍角答案:B47.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:10248.(選做題)
設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內∴,∴,∴,∴∴實數a的取值范圍為.49.一位運動員投擲鉛球的成績是14m,當鉛球運行的水平距離是6m時,達到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()
A.2.25m
B.2.15m
C.1.85m
D.1.75m
答案:D50.已知點A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()
A.
B.
C.
D.答案:D第2卷一.綜合題(共50題)1.△ABC內接于以O為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內接于以O為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.2.若曲線的極坐標方程為ρ=2sinθ+4cosθ,以極點為原點,極軸為x軸正半軸建立直角坐標系,則該曲線的直角坐標方程為______.答案:曲線的極坐標方程為ρ=2sinθ+4cosθ,即ρ2=2ρsinθ+4ρcosθ,即x2+y2=2y+4x,化簡為(x-2)2+(y-1)2=5,故為(x-2)2+(y-1)2=5.3.鐵路托運行李,從甲地到乙地,按規(guī)定每張客票托運行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:4.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個.
A.2
B.3
C.4
D.5答案:D5.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標原點)的一個法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設平面AOB(O是坐標原點)的一個法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.6.如圖所示,圓的內接△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B7.定義集合運算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當x=0時,z=0,當x=1,y=2時,z=6,當x=1,y=3時,z=12,故所有元素之和為18,故選D8.設集合A={1,2},={2,3},C={2,3,4},則(A∩B)∪C=______.答案:由題得:A∩B={2},又因為C={2,3,4},(故A∩B)∪C={2,3,4}.故為
{2,3,4}.9.用隨機數表法進行抽樣有以下幾個步驟:①將總體中的個體編號;②獲取樣本號碼;③選定開始的數字,這些步驟的先后順序應為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機數表法進行抽樣,包含這樣的步驟,①將總體中的個體編號;②選定開始的數字,按照一定的方向讀數;③獲取樣本號碼,∴把題目條件中所給的三項排序為:①③②,故選C.10.若A,B,C是直線存在實數x使得,實數x為()
A.-1
B.0
C.
D.答案:A11.設二項式(33x+1x)n的展開式的各項系數的和為P,所有二項式系數的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據題意,對于二項式(33x+1x)n的展開式的所有二項式系數的和為S,則S=2n,令x=1,可得其展開式的各項系數的和,即P=4n,結合題意,有4n+2n=272,解可得,n=4,故選A.12.設隨機變量ξ服從正態(tài)分布N(μ,σ2),且函數f(x)=x2+4x+ξ沒有零點的概率為,則μ為()
A.1
B.4
C.2
D.不能確定答案:B13.設U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}14.若p、q是兩個簡單命題,且“p或q”的否定形式是真命題,則()
A.p真q真
B.p真q假
C.p假q真
D.p假q假答案:D15.過點P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數)相交于A,B兩點.求線段AB的長.答案:直線的參數方程為
x
=
-3
+
32sy
=
12s
(s
為參數),曲線x=t+1ty=t-1t
可以化為
x2-y2=4.將直線的參數方程代入上式,得
s2-63s+
10
=
0.設A、B對應的參數分別為s1,s2,∴s1+
s2=
6
3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.16.已知三點A(1,2),B(2,-1),C(2,2),E,F為線段BC的三等分點,則AE?AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE?AF=1×1+(-2)×(-1)=3.故為:317.動點P到直線x+2=0的距離減去它到M(1,0)的距離之差等于1,則動點P的軌跡是______.答案:將直線x+2=0向右平移1個長度單位得到直線x+1=0,則動點到直線x+1=0的距離等于它到M(1,0)的距離,由拋物線定義知:點P的軌跡是以點M為焦點的拋物線.:以點M為焦點以x=-1為準線的拋物線.18.函數y=x2x4+9(x≠0)的最大值為______,此時x的值為______.答案:y=x2x4+9=1x2+9x2≤129=16,當且僅當x2=9x2,即x=±3時取等號.故為:16,
±319.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:16520.用秦九韶算法求多項式
在的值.答案:.解析:可根據秦九韶算法原理,將所給多項式改寫,然后由內到外逐次計算即可.
而,所以有,,,,,.即.【名師指引】利用秦九韶算法計算多項式值關鍵是能正確地將所給多項式改寫,然后由內到外逐次計算,由于后項計算需用到前項的結果,故應認真、細心,確保中間結果的準確性.21.設函數f(x)的定義域為R,如果對任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:3222.如圖,一個空間幾何體的正視圖、側視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長為2,那么
這個幾何體的體積為()A.13B.23C.43D.2答案:根據三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個腰長是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側棱長是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.23.已知點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數)上,則|PF|的長為______.答案:∵拋物線x=4t2y=4t(t為參數)上,∴y2=4x,∵點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.24.若方程sin2x+4sinx+m=0有實數解,則m的取值范圍是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D25.在測量某物理量的過程中,因儀器和觀察的誤差,使得n次測量分別得到a1,a2,…,an,共n個數據.我們規(guī)定所測量的“量佳近似值”a是這樣一個量:與其他近似值比較,a與各數據的差的平方和最小.依此規(guī)定,從a1,a2,…,an推出的a=______.答案:∵所測量的“量佳近似值”a是與其他近似值比較,a與各數據的差的平方和最?。鶕挡坏仁角笃椒胶偷淖钚≈抵@些數的底數要盡可能的接近,∴a是所有數字的平均數,∴a=a1+a2+…+ann,故為:a1+a2+…+ann26.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長度相等的向量是相等向量;⑥平行于同一個向量的兩個向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯;②不相等的向量也可能不平行;故錯;③相等向量一定共線;正確;④共線向量不一定相等;故錯;⑤長度相等的向量方向相反時不是相等向量;故錯;⑥平行于零向量的兩個向量是不一定是共線向量,故錯.其中正確的命題是③.故為:③.27.若A∩B=A∪B,則A______B.答案:設有集合W=A∪B=B∩C,根據并集的性質,W=A∪B?A?W,B?W,根據交集的性質,W=A∩B?W?A,W?B由集合子集的性質,A=B=W,故為:=.28.如圖所示的圓盤由八個全等的扇形構成,指針繞中心旋轉,可能隨機停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉動轉盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.29.如圖,從圓O外一點P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.30.設α∈[0,π],則方程x2sinα+y2cosα=1不能表示的曲線為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:C31.{,,}=是空間向量的一個基底,設=+,=+,=+,給出下列向量組:①{,,},②{,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.
A.1
B.2
C.3
D.4答案:C32.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3433.設x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需
即只需由條件,顯然成立.∴原不等式成立34.已知球的表面積等于16π,圓臺上、下底面圓周都在球面上,且下底面過球心,圓臺的軸截面的底角為π3,則圓臺的軸截面的面積是()A.9πB.332C.33D.6答案:設球的半徑為R,由題意4πR2=16,R=2,圓臺的軸截面的底角為π3,可得圓臺母線長為2,上底面半徑為1,圓臺的高為3,所以圓臺的軸截面的面積S=12(2+4)×3=33故選C35.已知動點M到定點F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點的軌跡是拋物線,并求出其方程;
(2)大家知道,過圓上任意一點P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點).受此啟發(fā),研究下面問題:
1過(1)中的拋物線的頂點O任意作互相垂直的弦OA、OB,問:弦AB是否經過一個定點?若經過,請求出定點坐標,否則說明理由;2研究:對于拋物線上某一定點P(非頂點),過P任意作互相垂直的弦PA、PB,弦AB是否經過定點?答案:(1)證明:由題意可知:動點M到定點F(1,0)的距離等于M到定直線x=-1的距離根據拋物線的定義可知,M的軌跡是拋物線所以拋物線方程為:y2=4x(2)(i)設A(x1,y1),B(x2,y2),lAB:y=kx+b,(b≠0)由y=kx+by2=4x消去y得:k2x2+(2bk-4)kx+b2=0,x1x2=b2k2.∵OA⊥OB,∴OA?OB=0,∴x1x2+y1y2=0,y1y2=4bk所以x1x2+(x1x2)2=0,b≠0,∴b=-2k,∴直線AB過定點M(1,0),(ii)設p(x0,y0)設AB的方程為y=mx+n,代入y2=2x得y2-2my=-2n=0∴y1+y2=2m,y1y2-2n其中y1,y2分別是A,B的縱坐標∵AP⊥PB∴kmax?kmin=-1即y1-y0x1-x0?y2-y0x2-x0=1∴(y1+y0)(y2+y0)=-4?y1y2+(y1+y2)y0+y02-4=0(-2n)+2my0+2x0+4=0,=my0+x0+2直線PQ的方程為x=my+my0+x0+2,即x=m(y+y0)+x0+2,它一定過點(x0+2,-y0)36.某廠生產電子元件,其產品的次品率為5%.現從一批產品中任意的連續(xù)取出2件,寫出其中次品數ξ的概率分布.答案:依題意,隨機變量ξ~B(2,5%).所以,P(ξ=0)=C20(95%)2=0.9025,P(ξ=1)=C21(5%)(95%)=0.095P(ξ=2)=C22(5%)2=0.0025因此,次品數ξ的概率分布是:37.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.38.想要檢驗是否喜歡參加體育活動是不是與性別有關,應該檢驗()
A.H0:男性喜歡參加體育活動
B.H0:女性不喜歡參加體育活動
C.H0:喜歡參加體育活動與性別有關
D.H0:喜歡參加體育活動與性別無關答案:D39.若m∈{-2,-1,1,2},n∈{-2,-1,1,2,3},則方程x2m+y2n=1表示的是雙曲線的概率為______.答案:由題意,方程x2m+y2n=1表示雙曲線時,mn<0,m>0,n<0時,有2×2=4種,m<0,n>0時,有2×3=6種∵m,n的取值共有4×5=20種∴方程x2m+y2n=1表示的是雙曲線的概率為4+620=12故為:1240.已知||=3,A、B分別在x軸和y軸上運動,O為原點,則動點P的軌跡方程是()
A.
B.
C.
D.答案:B41.已知下列命題(其中a,b為直線,α為平面):
①若一條直線垂直于一個平面內無數條直線,則這條直線與這個平面垂直;
②若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;
③若a∥α,b⊥α,則a⊥b;
④若a⊥b,則過b有且只有一個平面與a垂直.
上述四個命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內無數條直線均為平行線時,不能得出直線與這個平面垂直,將“無數條”改為“所有”才正確;故①錯誤;②垂直于這條直線的直線與這個平面可以是任何的位置關系,有可能是平行、相交、線在面內,故②錯誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個平面與a垂直,顯然正確.故選D.42.正方體AC1中,S,T分別是棱AA1,A1B1上的點,如果∠TSC=90°,那么∠TSB=______.答案:由題意,BC⊥平面A1B,∵S,T分別是棱AA1,A1B1上的點,∴BC⊥ST∵∠TSC=90°,∴ST⊥SC∵BC∩SC=C∴ST⊥平面SBC∴ST⊥SB∴∠TSB=90°,故為:90°43.直線kx-y=k-1與直線ky=x+2k的交點在第二象限內,則k的取值范圍是
______.答案:聯立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當k+1≠0即k≠-1時,解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點坐標為(kk-1,2k-1k-1)因為直線kx-y=k-1與直線ky=x+2k的交點在第二象限內,得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<1244.設復數z=cosθ+sinθi,0≤θ≤π,則|z+1|的最大值為______.答案:復數z=cosθ+sinθi,0≤θ≤π,則|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故為:2.45.對于函數y=f(x),在給定區(qū)間上有兩個數x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數B.一定是減函數C.可能是常數函數D.單調性不能確定答案:解析:由單調性定義可知,不能用特殊值代替一般值.故選D.46.設集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.47.若長方體的三個面的對角線長分別是a,b,c,則長方體體對角線長為()A.a2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:設同一頂點的三條棱分別為x,y,z,則x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),則對角線長為12(a2+b2+c2)=22a2+b2+c2.故選C.48.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯結詞的情況是()A.使用了邏輯聯結詞“且”B.使用了邏輯聯結詞“或”C.使用了邏輯聯結詞“非”D.沒有使用邏輯聯結詞答案:“x=±1”可以寫成“x=1或x=-1”,故選B.49.如圖,l1,l2,l3是同一平面內的三條平行直線,l1與l2間的距離是1,l3與l2間的距離是2,正△ABC的三頂點分別在l1,l2,l3上,則△ABC的邊長是______.答案:如圖,過A,C作AE,CF垂直于L2,點E,F是垂足,將Rt△BCF繞點B逆時針旋轉60°至Rt△BAD處,延長DA交L2于點G.由作圖可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故為:221350.直線L1:x-y=0與直線L2:x+y-10=0的交點坐標是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A第3卷一.綜合題(共50題)1.(1)把二進制數化為十進制數;(2)把化為二進制數.答案:(1)45,(2)解析:(1)先把二進制數寫成不同位上數字與2的冪的乘積之和的形式,再按照十進制的運算規(guī)則計算出結果;(2)根據二進制數“滿二進一”的原則,可以用連續(xù)去除或所得商,然后取余數.(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發(fā)現,直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..2.在平面直角坐標系內第二象限的點組成的集合為______.答案:∵平面直角坐標系內第二象限的點,橫坐標小于0,縱坐標大于0,∴在平面直角坐標系內第二象限的點組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.3.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D4.已知直線l:ax+by=1(ab>0)經過點P(1,4),則l在兩坐標軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經過點P(1,4),∴a+4b=1,故a、b都是正數.故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當且僅當4ba=ab時,取等號,故為9.5.對變量x,y
有觀測數據(x1,y1)(i=1,2,…,10),得散點圖1;對變量u,v
有觀測數據(v1,vi)(i=1,2,…,10),得散點圖2.下列說法正確的是()
A.變量x
與y
正相關,u
與v
正相關
B.變量x
與y
負相關,u
與v
正相關
C.變量x
與y
正相關,u
與v
負相關
D.變量x
與y
負相關,u
與v
負相關答案:B6.是x1,x2,…,x100的平均數,a是x1,x2,…,x40的平均數,b是x41,x42,…,x100的平均數,則下列各式正確的是()
A.=
B=
C.=a+b
D.答案:A7.下列各組幾何體中是多面體的一組是(
)
A.三棱柱、四棱臺、球、圓錐
B.三棱柱、四棱臺、正方體、圓臺
C.三棱柱、四棱臺、正方體、六棱錐
D.圓錐、圓臺、球、半球答案:C8.①學校為了了解高一學生的情況,從每班抽2人進行座談;②一次數學競賽中,某班有10人在110分以上,40人在90~100分,12人低于90分.現在從中抽取12人了解有關情況;③運動會服務人員為參加400m決賽的6名同學安排跑道.就這三件事,合適的抽樣方法為()A.分層抽樣,分層抽樣,簡單隨機抽樣B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣答案:①是從較多的一個總體中抽取樣本,且總體之間沒有差異,故用系統(tǒng)抽樣,②是從不同分數的總體中抽取樣本,總體之間的差異比較大,故用分層抽樣,③是六名運動員選跑道,用簡單隨機抽樣,故選D.9.函數y=ax2+1的圖象與直線y=x相切,則a=______.答案:設切點為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.10.用隨機數表法從100名學生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個等可能事件的概率,試驗發(fā)生包含的事件是用隨機數表法從100名學生選一個,共有100種結果,滿足條件的事件是抽取20個,∴根據等可能事件的概率公式得到P=20100=15,故選A.11.已知向量a=(1,1)與b=(2,3),用坐標表示2a+b為______.答案:根據題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).12.求證:不論λ取什么實數時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經過一個定點,并求出這個定點的坐標.答案:證明:直線(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根據λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不論λ取什么實數時,直線(2λ-1)x+(λ+3)y-(λ-11)=0都經過一個定點(2,-3).13.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與
B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.14.已知A、B、C三點共線,A分的比為λ=-,A,B的縱坐標分別為2,5,則點C的縱坐標為()
A.-10
B.6
C.8
D.10答案:D15.已知函數f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數”.在函數①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數”.(填上正確的函數序號)答案:f1(x),f2(x)是“保三角形函數”,f3(x)不是“保三角形函數”.任給三角形,設它的三邊長分別為a,b,c,則a+b>c,不妨假設a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數”.對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數”.故為:①②.16.下列語句是命題的是______.
①求證3是無理數;
②x2+4x+4≥0;
③你是高一的學生嗎?
④一個正數不是素數就是合數;
⑤若x∈R,則x2+4x+7>0.答案:①是祈使句,所以①不是命題.②是命題,能夠判斷真假,因為x2+4x+4=(x+2)2≥0,所以②是命題.③是疑問句,所以③不是命題.④能夠判斷真假,所以④是命題.⑤能夠判斷真假,因為x2+4x+7=(x+2)2+3>0,所以⑤是命題.故為:②④⑤.17.用反證法證明命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”則假設的內容是()
A.a,b都能被5整除
B.a,b都不能被5整除
C.a,b不能被5整除
D.a,b有1個不能被5整除答案:B18.下面的結論正確的是()A.一個程序的算法步驟是可逆的B.一個算法可以無止境地運算下去的C.完成一件事情的算法有且只有一種D.設計算法要本著簡單方便的原則答案:算法需每一步都按順序進行,并且結果唯一,不能保證可逆,故A不正確;一個算法必須在有限步內完成,不然就不是問題的解了,故B不正確;一般情況下,完成一件事情的算法不止一個,但是存在一個比較好的,故C不正確;設計算法要盡量運算簡單,節(jié)約時間,故D正確,故選D.19.方程.12
41x
x21-3
9.=0的解集為______.答案:.12
41x
x21-3
9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.20.
如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=6,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=()
A.4
B.3
C.5
D.6
答案:A21.函數f(x)=x+1x的定義域是______.答案:要使原函數有意義,則x≥0x≠0,所以x>0.所以原函數的定義域為(0,+∞).故為(0,+∞).22.△ABC中,A(1,2),B(3,1),重心G(3,2),則C點坐標為______.答案:設點C(x,y)由重心坐標公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故點C的坐標為(5,3)故為(5,3)23.對賦值語句的描述正確的是(
)
①可以給變量提供初值
②將表達式的值賦給變量
③可以給一個變量重復賦值
④不能給同一變量重復賦值A.①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個算法時,經常要引入變量,并賦給該變量一個值。用來表明賦給某一個變量一個具體的確定值的語句叫做賦值語句。賦值語句的一般格式是:變量名=表達式其中“=”為賦值號.故選A。點評:簡單題,賦值語句的一般格式是:變量名=表達式其中"="為賦值號。24.已知函數f(x)=2-x,x≤112+log2x,x>1,則滿足f(x)≥1的x的取值范圍為______.答案:當x≤1時,2-x≥1,解得-x≥0,即x≤0,所以x≤0;當x>1時,12+log2x≥1,解得x≥2,所以x≥2.所以滿足f(x)≥1的x的取值范圍為(-∞,0]∪[2,+∞).故為:(-∞,0]∪[2,+∞).25.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點,n∈N*.已知OP1=(2,0),則OP2010的坐標為______.答案:A=1011,B=20AA=1011
1011
=1021A3=111
121
=1031依此類推A2009=1020101∴A2009B=1020101
20=24018∴OP2010的坐標為(2,4018)故為:(2,4018)26.與原數據單位不一樣的是()
A.眾數
B.平均數
C.標準差
D.方差答案:D27.下列對一組數據的分析,不正確的說法是()
A.數據極差越小,樣本數據分布越集中、穩(wěn)定
B.數據平均數越小,樣本數據分布越集中、穩(wěn)定
C.數據標準差越小,樣本數據分布越集中、穩(wěn)定
D.數據方差越小,樣本數據分布越集中、穩(wěn)定答案:B28.(本題滿分12分)
已知:
求證:答案:.證明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案29.如圖,△ABC內接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C30.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點坐標為
______.答案:設C(x,y,z),則:
AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)31.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標是
______.答案:根據拋物線方程可求得焦點坐標為(0,1)根據拋物線定義可知點p到焦點的距離與到準線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標是(±6,9)故為:(±6,9)32.若一元二次方程ax2+2x+1=0有一個正根和一個負根,則有
A.a<0
B.a>0
C.a<-1
D.a>1答案:A33.能較好地反映一組數據的離散程度的是()
A.眾數
B.平均數
C.標準差
D.極差答案:C34.(本小題滿分12分)
如圖,已知橢圓C1的中心在圓點O,長軸左、右端點M、N在x軸上,橢圓C1的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C1交于兩點,這四點按縱坐標從大到小依次為A、B、C、D.
(I)設e=,求|BC|與|AD|的比值;
(II)當e變化時,是否存在直線l,使得BO//AN,并說明理由.答案:(II)t=0時的l不符合題意,t≠0時,BO//AN當且僅當BO的斜率kBO與AN的斜率kAN相等,即,解得。因為,又,所以,解得。所以當時,不存在直線l,使得BO//AN;當時,存在直線l使得BO//AN。解析:略35.P是以F1,F2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B36.設,求證:。答案:證明略解析:證明:因為,所以有。又,故有?!?0分于是有得證。
…………20分37.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調遞減∵logax>loga5∴0<x<5故為:(0,5)38.已知離散型隨機變量X服從二項分布X~B(n,p)且E(X)=3,D(X)=2,則n與p的值分別為()
A.
B.
C.
D.答案:B39.已知△ABC,A(-1,0),B(3,0),C(2,1),對它先作關于x軸的反射變換,再將所得圖形繞原點逆時針旋轉90°.
(1)分別求兩次變換所對應的矩陣M1,M2;
(2)求△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′的面積.答案:(1)關于x軸的反射變換M1=100-1,繞原點逆時針旋轉90°的變換M2=0-110.(4分)(2)∵M2?M1=0-110100-1=0110,(6分)△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)40.某企業(yè)甲、乙、丙三個生產車間的職工人數分別為120人,150人,180人,現用分層抽樣的方法抽出一個容量為n的樣本,樣本中甲車間有4人,那么此樣本的容量n=______.答案:每個個體被抽到的概率等于
4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.41.當x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 42596.4-2024機床安全壓力機第4部分:氣動壓力機安全要求
- 技術經濟學課件-不確定性分析
- 妊娠合并甲狀腺功能減退的臨床護理
- 類丹毒的臨床護理
- 《機械設計基礎》課件-第10章
- 銀屑病的臨床護理
- 《證券經紀人培訓》課件
- JJF(陜) 010-2019 標準厚度塊校準規(guī)范
- 《計算器定時器》課件
- 制定圖文并茂的工作計劃
- 幼兒園手足口病教師培訓
- 超市安保人員工作管理制度
- 2024時事政治考試100題及參考答案
- 2024年職業(yè)健康素養(yǎng)考試題庫及答案
- 2024年山東省青島市中考地理試題卷(含答案及解析)
- 《技術規(guī)程》范本
- 重點語法清單2024-2025學年人教版英語八年級上冊
- 紅色簡約中國英雄人物李大釗課件
- 人民日報出版社有限責任公司招聘筆試題庫2024
- 2024年煤礦事故匯編
- Unit 2 Different families(教學設計)-2024-2025學年人教PEP版英語三年級上冊
評論
0/150
提交評論