2023年達(dá)州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年達(dá)州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年達(dá)州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年達(dá)州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年達(dá)州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年達(dá)州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是()

A.直線

B.橢圓

C.拋物線

D.雙曲線答案:D2.在極坐標(biāo)系中,過點p(3,)且垂直于極軸的直線方程為()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A3.如圖,已知雙曲線以長方形ABCD的頂點A,B為左、右焦點,且過C,D兩頂點.若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為______.答案:由題意可得點OA=OB=2,AC=5設(shè)雙曲線的標(biāo)準(zhǔn)方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標(biāo)準(zhǔn)方程是x2-y23=1.故為:x2-y23=14.已知x與y之間的一組數(shù)據(jù)是()

x0123y2468則y與x的線性回歸方程y=bx+a必過點()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根據(jù)所給的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴這組數(shù)據(jù)的樣本中心點是(1.5,5)∵線性回歸直線一定過樣本中心點,∴y與x的線性回歸方程y=bx+a必過點(1.5,5)故選D.5.某校有學(xué)生1

200人,為了調(diào)查某種情況打算抽取一個樣本容量為50的樣本,問此樣本若采用簡單隨便機抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號0001,0002,0003…用抽簽法做1200個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進(jìn)行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取50次,就得到一個容量為50的樣本.6.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進(jìn)行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:

甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙參加更合適

(12分)7.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()

A.

B.2

C.4

D.12答案:B8.點B是點A(1,2,3)在坐標(biāo)平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B9.設(shè)向量a,b,c滿足a+b+c=0,a⊥b,且a,b的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則c的模為______.答案:∵向量a,b,c滿足a+b+c=0,a⊥b,∴向量a,b,c構(gòu)成一個直角三角形,如圖∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故為:5.10.一次函數(shù)y=3x+2的斜率和截距分別是()A.2、3B.2、2C.3、2D.3、3答案:根據(jù)一次函數(shù)的定義和直線的斜截式方程知,此一次函數(shù)的斜率為3、截距為2故選C11.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點的軌跡是______.答案:|z|=5,即點Z到原點O的距離為5∴z所對應(yīng)點的軌跡為以(0,0)為圓心,5為半徑的圓.12.試比較nn+1與(n+1)n(n∈N*)的大?。?/p>

當(dāng)n=1時,有nn+1______(n+1)n(填>、=或<);

當(dāng)n=2時,有nn+1______(n+1)n(填>、=或<);

當(dāng)n=3時,有nn+1______(n+1)n(填>、=或<);

當(dāng)n=4時,有nn+1______(n+1)n(填>、=或<);

猜想一個一般性的結(jié)論,并加以證明.答案:當(dāng)n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當(dāng)n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當(dāng)n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當(dāng)n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時也成立,∴當(dāng)n≥3時,nn+1>(n+1)n(n∈N*)恒成立.13.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.14.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構(gòu)成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>

1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.15.拋物線y2=4x的焦點坐標(biāo)為()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B16.請寫出所給三視圖表示的簡單組合體由哪些幾何體組成.______.答案:由已知中的三視圖我們可以判斷出該幾何體是由一個底面面積相等的圓錐和圓柱組合而成故為:圓柱體,圓錐體17.a、b、c∈R,則下列命題為真命題的是______.

①若a>b,則ac2>bc2

②若ac2>bc2,則a>b

③若a<b<0,則a2>ab>b2

④若a<b<0,則1a<1b.答案:當(dāng)c=0時,ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③18.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.19.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.20.直線l1:y=ax+b,l2:y=bx+a

(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()

A.

B.

C.

D.

答案:C21.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.22.設(shè)一次試驗成功的概率為p,進(jìn)行100次獨立重復(fù)試驗,當(dāng)p=______時,成功次數(shù)的標(biāo)準(zhǔn)差的值最大,其最大值為______.答案:由獨立重復(fù)試驗的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等號在p=q=12時成立,∴Dξ=100×12×12=25,σξ=25=5.故為:12;523.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()

A.

B.

C.

D.2答案:A24.已知命題p:“有的實數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實數(shù)沒有平方根.”,是一個特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實數(shù)都有平方根”故為:所有實數(shù)都有平方根.25.若回歸直線方程中的回歸系數(shù)b=0時,則相關(guān)系數(shù)r=______.答案:由于在回歸系數(shù)b的計算公式中,與相關(guān)指數(shù)的計算公式中,它們的分子相同,故為:0.26.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點,因而直線不過第二象限.故選B27.某商人將彩電先按原價提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結(jié)果是每臺彩電比原價多賺了270元,則每臺彩電原價是______元.答案:設(shè)每臺彩電的原價是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.28.如圖,一個空間幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為()A.π4B.5π4C.πD.3π2答案:此幾何體是一個底面直徑為1,高為1的圓柱底面周長是2π×12=π故側(cè)面積為1×π=π故選C29.已知原點O(0,0),則點O到直線4x+3y+5=0的距離等于

______.答案:利用點到直線的距離公式得到d=|5|42+32=1,故為1.30.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()

A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于

B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于

C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于

D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D31.下列選項中元素的全體可以組成集合的是()A.2013年1月風(fēng)度中學(xué)高一級高個子學(xué)生B.校園中長的高大的樹木C.2013年1月風(fēng)度中學(xué)高一級在校學(xué)生D.學(xué)?;@球水平較高的學(xué)生答案:因為集合中元素具有:確定性、互異性、無序性.所以A、B、D都不是集合,元素不確定;故選C.32.已知f(x)=1-(x-a)(x-b),并且m,n是方程f(x)=0的兩根,則實數(shù)a,b,m,n的大小關(guān)系可能是()

A.m<a<b<n

B.a(chǎn)<m<n<b

C.a(chǎn)<m<b<n

D.m<a<n<b答案:A33.向量在基底{,,}下的坐標(biāo)為(1,2,3),則向量在基底{}下的坐標(biāo)為()

A.(3,4,5)

B.(0,1,2)

C.(1,0,2)

D.(0,2,1)答案:D34.一位運動員投擲鉛球的成績是14m,當(dāng)鉛球運行的水平距離是6m時,達(dá)到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D35.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3336.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時,左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時不等式成立,即S

2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時,不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對于任意的n≥2正整數(shù)成立.37.己知△ABC的外心、重心、垂心分別為O,G,H,若,則λ=()

A.3

B.2

C.

D.答案:A38.在下列條件中,使M與不共線三點A、B、C,一定共面的是

[

]答案:C39.不等式0.52x>0.5x-1的解集為______.答案:由于函數(shù)y=0.5x

是R上的減函數(shù),故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集為(-∞,-1),故為(-∞,-1).40.已知△ABC的三個頂點A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為______.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).41.若點A的坐標(biāo)為(3,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標(biāo)為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準(zhǔn)線方程為x=-12,設(shè)點M到準(zhǔn)線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當(dāng)P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點M的坐標(biāo)是(2,2),故選D.42.有五條線段長度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.43.已知△ABC的三個頂點為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.44.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C45.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于

______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.46.△ABC中,,若,則m+n=()

A.

B.

C.

D.1答案:B47.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.48.某會議室第一排共有8個座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為()A.12B.16C.24D.32答案:將空位插到三個人中間,三個人有兩個中間位置和兩個兩邊位置就是將空位分為四部分,五個空位四分只有1,1,1,2空位五差別,只需要空位2分別占在四個位置就可以有四種方法,另外三個人排列A33=6根據(jù)分步計數(shù)可得共有4×6=24故選C.49.下列給變量賦值的語句正確的是()

A.5=a

B.a(chǎn)+2=a

C.a(chǎn)=b=4

D.a(chǎn)=2*a答案:D50.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設(shè)點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=1第2卷一.綜合題(共50題)1.已知橢圓C的中心在原點,焦點F1,F(xiàn)2在軸上,離心率e=22,且經(jīng)過點M(0,2),求橢圓c的方程答案:若焦點在x軸很明顯,過點M(0,2)點M即橢圓的上端點,所以b=2ca=22c2=12a2∵a2=b2+c2所以b2=c2=2a2=4橢圓:x24+y22=1若焦點在y軸,則a=2,ca=22,c=1∴b=1橢圓方程:x22+y2=1.2.已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實部為13,則復(fù)數(shù)z的虛部為______.答案:設(shè)復(fù)數(shù)的虛部是b,∵復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±2233.袋中裝著標(biāo)有數(shù)字1,2,3,4的小球各3個,從袋中任取3個小球,每個小球被取出的可能性都相等.

(Ⅰ)求取出的3個小球上的數(shù)字互不相同的概率;

(Ⅱ)用X表示取出的3個小球上所標(biāo)的最大數(shù)字,求隨機變量X的分布列和均值.答案:(I)由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)C123,滿足條件的事件是取出的3個小球上的數(shù)字互不相同,共有C43C31C31C31記“一次取出的3個小球上的數(shù)字互不相同”的事件記為A,∴P(A)=C34?C13?C13?C13C312=2755.(II)由題意X所有可能的取值為:1,2,3,4.P(X=1)=1C312=1220;P(X=2)=C23?C13+C23?C13+C33C312=19220;P(X=3)=C26?C13+C16?C23+C33C312=64220=1655;P(X=4)=C29?C13+C19?C23+C33C312=136220=3455.∴隨機變量X的分布列為∴隨機變量X的期望為EX=1×1220+2×19220+3×1655+4×3455=15544.4.抽樣調(diào)查在抽取調(diào)查對象時()A.按一定的方法抽取B.隨意抽取C.全部抽取D.根據(jù)個人的愛好抽取答案:一般地,抽樣方法分為3種:簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣無論是哪種抽樣方法,都遵循機會均等的原理,即在抽樣過程中,各個體被抽到的概率是相等的.根據(jù)以上分析,可知只有A項符合題意.故選:A5.拋擲3顆質(zhì)地均勻的骰子,求點數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點數(shù)和為8的事件包含了向上的點的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點數(shù)和為8的事件的概率是15216=572故為:572.6.使關(guān)于的不等式有解的實數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。7.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.8.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B9.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|

=7,故為7.10.設(shè)全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當(dāng)集合C∪A∩B的所有子集個數(shù)最多時,集合B中最多有三個元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個數(shù)為:23=8.故選D.11.如圖,有兩條相交成π3角的直線EF,MN,交點是O.一開始,甲在OE上距O點2km的A處;乙在OM距O點1km的B處.現(xiàn)在他們同時以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設(shè)與OE同向的單位向量為e1,與OM同向的單位向量為e2.

(1)求e1,e2;

(2)若過2小時后,甲到達(dá)C點,乙到達(dá)D點,請用e1,e2表示CD;

(3)若過t小時后,甲到達(dá)G點,乙到達(dá)H點,請用e1,e2表示GH;

(4)什么時間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時后,甲到達(dá)C點,乙到達(dá)D點,則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經(jīng)過t小時后,甲到達(dá)G點,乙到達(dá)H點,則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數(shù)的知識可知,當(dāng)t=--62×12=14時,上式取到最小值32,故14時兩人間距離最短.12.①某尋呼臺一小時內(nèi)收到的尋呼次數(shù)X;

②長江上某水文站觀察到一天中的水位X;

③某超市一天中的顧客量X.

其中的X是連續(xù)型隨機變量的是()

A.①

B.②

C.③

D.①②③答案:B13.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.14.選修4-4:坐標(biāo)系與參數(shù)方程

已知極點O與原點重合,極軸與x軸的正半軸重合.點A,B的極坐標(biāo)分別為(2,π),(22,π4),曲線C的參數(shù)方程為答案:(Ⅰ)S△AOB=12×2×215.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本、用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是______.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取______人.答案:∵將全體職工隨機按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,∵第5組抽出的號碼為22,∴第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為37.40歲以下的年齡段的職工數(shù)為200×0.5=100,則應(yīng)抽取的人數(shù)為40200×100=20(人).故為:37;2016.向面積為S的△ABC內(nèi)任投一點P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因為陰影部分的面積是整個三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.17.把一顆骰子擲兩次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則點(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點在直線的下方的概率是636=16故選A.18.在對吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

A.若隨機變量K2的觀測值k>6.635,我們有99%的把握說明吸煙與患肺病有關(guān),則若某人吸煙,那么他有99%的可能患有肺病

B.若由隨機變量求出有99%的把握說吸煙與患肺病有關(guān),則在100個吸煙者中必有99個人患有肺病

C.若由隨機變量求出有95%的把握說吸煙與患肺病有關(guān),那么有5%的可能性使得推斷錯誤

D.以上說法均不正確答案:D19.用數(shù)學(xué)歸納法證明:1n+1+1n+2+1n+3+…+1n+n>1124

(n∈N,n≥1)答案:證明:(1)當(dāng)n=1時,左邊=12>1124,∴n=1時成立(2分)(2)假設(shè)當(dāng)n=k(k≥1)時成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么當(dāng)n=k+1時,左邊=1k+2+1k+3+…+1k+k

+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1

+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n≥1都成立(8分)20.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.21.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設(shè)點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=122.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ

①y=1+2cos2θ

②,因為θ∈R,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).23.已知點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數(shù))上,則|PF|的長為______.答案:∵拋物線x=4t2y=4t(t為參數(shù))上,∴y2=4x,∵點P(3,m)在以點F為焦點的拋物線x=4t2y=4t(t為參數(shù))上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故為4.24.下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費用y(萬元)的幾組統(tǒng)計數(shù)據(jù):

x23456y2.23.85.56.57.0(1)請在給出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程

y=

bx+

a;

(3)估計使用年限為10年時,維修費用為多少?

(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對應(yīng)的點的坐標(biāo),寫出點的坐標(biāo),在坐標(biāo)系描出點,得到散點圖,(2)∵5i=1xi2=4+9+16+25+36=90

且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當(dāng)x=10時,y=1.23×10+0.08=12.38,所以估計當(dāng)使用10年時,維修費用約為12.38萬元.25.若隨機變量ξ~N(2,9),則隨機變量ξ的數(shù)學(xué)期望c=()

A.4

B.3

C.2

D.1答案:C26.方程組的解集是[

]A.{5,1}

B.{1,5}

C.{(5,1)}

D.{(1,5)}答案:C27.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當(dāng)a>1時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當(dāng)1>a>0時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得

a=12.綜上,a的值為12或32故選C.28.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為()

A.內(nèi)切

B.相交

C.外切

D.相離答案:B29.已知隨機變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C30.已知直線y=kx+1與橢圓x25+y2m=1恒有公共點,則實數(shù)m的取值范圍為()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直線y=kx+1恒過點M(0,1)要使直線y=kx+1與橢圓x25+y2m=1恒有公共點,則只要M(0,1)在橢圓的內(nèi)部或在橢圓上從而有m>0m≠505+1m≤1,解可得m≥1且m≠5故選D.31.一個公司共有240名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是______.答案:每個個體被抽到的概率是

20240=112,那么從甲部門抽取的員工人數(shù)是60×112=5,故為:5.32.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經(jīng)過兩點O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點到兩圓的切線長相等答案:D33.如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且

DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7234.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()

A.1

B.-1

C.±1

D.2答案:A35.某籃球運動員在一個賽季的40場比賽中的得分的莖葉圖如圖所示,則這組數(shù)據(jù)的中位數(shù)是______;眾數(shù)是______.

答案:將比賽中的得分按照從小到大的順序排,中間兩個數(shù)為23,23,所以這組數(shù)據(jù)的中位數(shù)是23,所有的數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是23故為23;2336.如圖,設(shè)P,Q為△ABC內(nèi)的兩點,且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:4537.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對任意自然數(shù)n都滿足xn<xn+1,或者對任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號相同.①假定x1<1,我們用數(shù)學(xué)歸納法證明1-xn2>0(n∈N)顯然,n=1時,1-x12>0設(shè)n=k時1-xk2>0,那么當(dāng)n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對一切自然數(shù)n都有1-xn2>0,從而對一切自然數(shù)n都有xn<xn+1②若x1>1,當(dāng)n=1時,1-x12<0;設(shè)n=k時1-xk2<0,那么當(dāng)n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對一切自然數(shù)n都有1-xn2<0,從而對一切自然數(shù)n都有xn>xn+138.若|x-4|+|x+5|>a對于x∈R均成立,則a的取值范圍為______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值為9.再由題意可得,當(dāng)a<9時,不等式對x∈R均成立.故為(-∞,9).39.構(gòu)成多面體的面最少是()

A.三個

B.四個

C.五個

D.六個答案:B40.(1)求過兩直線l1:7x-8y-1=0和l2:2x+17y+9=0的交點,且平行于直線2x-y+7=0的直線方程.

(2)求點A(--2,3)關(guān)于直線l:3x-y-1=0對稱的點B的坐標(biāo).答案:(1)聯(lián)立兩條直線的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1與l2交點坐標(biāo)是(-1127,-1327).(2)設(shè)與直線2x-y+7=0平行的直線l方程為2x-y+c=0因為直線l過l1與l2交點(-1127,-1327).所以c=13所以直線l的方程為6x-3y+1=0.點P(-2,3)關(guān)于直線3x-y-1=0的對稱點Q的坐標(biāo)(a,b),則b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,對稱點的坐標(biāo)(10,-1)41.5本不同的書全部分給3個學(xué)生,每人至少一本,共有()種分法.

A.60

B.150

C.300

D.210答案:B42.如圖是《集合》的知識結(jié)構(gòu)圖,如果要加入“子集”,那么應(yīng)該放在()

A.“集合”的下位

B.“含義與表示”的下位

C.“基本關(guān)系”的下位

D.“基本運算”的下位

答案:C43.如圖,直線AB是平面α的斜線,A為斜足,若點P在平面α內(nèi)運動,使得點P到直線AB的距離為定值a(a>0),則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因為點P到直線AB的距離為定值a,所以,P點在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點P在平面α內(nèi)運動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.44.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設(shè)得分為隨機變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個數(shù)可能為4,3,2,1個,黑球相應(yīng)個數(shù)為0,1,2,3個.其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.45.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)()

A.均為正值

B.均為負(fù)值

C.一正一負(fù)

D.至少有一個等于0答案:D46.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點,∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設(shè)所作的兩切線交于點P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°47.一只袋中裝有2個白球、3個紅球,這些球除顏色外都相同.

(Ⅰ)從袋中任意摸出1個球,求摸到的球是白球的概率;

(Ⅱ)從袋中任意摸出2個球,求摸出的兩個球都是白球的概率;

(Ⅲ)從袋中任意摸出2個球,求摸出的兩個球顏色不同的概率.答案:(Ⅰ)從5個球中摸出1個球,共有5種結(jié)果,其中是白球的有2種,所以從袋中任意摸出1個球,摸到白球的概率為25.

…(4分)(Ⅱ)從袋中任意摸出2個球,共有C25=10種情況,其中全是白球的有1種,故從袋中任意摸出2個球,摸出的兩個球都是白球的概率為110.…(9分)(Ⅲ)由(Ⅱ)可知,摸出的兩個球顏色不同的情況共有2×3=6種,故從袋中任意摸出2個球,摸出的2個球顏色不同的概率為610=35.

…(14分)48.設(shè)復(fù)數(shù)z=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).

(1)設(shè)復(fù)數(shù)z滿足條件|z+3|+(-1)n|z-3|=3a+(-1)na(其中n∈N*,常數(shù)a∈

(32

,

3)),當(dāng)n為奇數(shù)時,動點P(x,y)的軌跡為C1;當(dāng)n為偶數(shù)時,動點P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點D(2,2),求軌跡C1與C2的方程;

(2)在(1)的條件下,軌跡C2上存在點A,使點A與點B(x0,0)(x0>0)的最小距離不小于233,求實數(shù)x0的取值范圍.答案:(1)方法1:①當(dāng)n為奇數(shù)時,|z+3|-|z-3|=2a,常數(shù)a∈

(32

,

3),軌跡C1為雙曲線,其方程為x2a2-y29-a2=1;…(3分)②當(dāng)n為偶數(shù)時,|z+3|+|z-3|=4a,常數(shù)a∈

(32

,

3),軌跡C2為橢圓,其方程為x24a2+y24a2-9=1;…(6分)依題意得方程組44a2+24a2-9=14a2-29-a2=1?4a4-45a2+99=0a4-15a2+36=0

,解得a2=3,因為32<a<3,所以a=3,此時軌跡為C1與C2的方程分別是:x23-y26=1(x>0),x212+y23=1.…(9分)方法2:依題意得|z+3|+|z-3|=4a|z+3|-|z-3|=2a?|z+3|=3a|z-3|=a…(3分)軌跡為C1與C2都經(jīng)過點D(2,2),且點D(2,2)對應(yīng)的復(fù)數(shù)z=2+2i,代入上式得a=3,…(6分)即|z+3|-|z-3|=23對應(yīng)的軌跡C1是雙曲線,方程為x23-y26=1(x>0);|z+3|+|z-3|=43對應(yīng)的軌跡C2是橢圓,方程為x212+y23=1.…(9分)(2)由(1)知,軌跡C2:x212+y23=1,設(shè)點A的坐標(biāo)為(x,y),則|AB|2=(x-x0)2+y2=(x-x0)2+3-14x2=34x2-2x0x+x20+3=34(x-43x0)2+3-13x20,x∈[-23,23]…(12分)當(dāng)0<43x0≤23即0<x0≤332時,|AB|2min=3-13x20≥43?0<x0≤5當(dāng)43x0>23即x0>332時,|AB|min=|x0-23|≥233?x0≥833,…(16分)綜上,0<x0≤5或x0≥833.…(18分)49.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標(biāo)準(zhǔn)差為23,則實數(shù)a的值為______.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標(biāo)準(zhǔn)差為3a2=23解得a=±2故為:±250.關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩實根,且一個大于4,一個小于4,求m的取值范圍。答案:解:令f(x)=mx2+2(m+3)x+2m+14,依題意得或,即或,解得。第3卷一.綜合題(共50題)1.Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()

A.線段或銳角三角形

B.線段與直角三角形

C.線段或鈍角三角形

D.線段、銳角三角形、直角三角形或鈍角三角形答案:B2.設(shè)P、Q為兩個非空實數(shù)集,定義集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},則P+Q中元素的個數(shù)是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴當(dāng)a=0時,b∈Q,P+Q={1,2,6}當(dāng)a=2時,b∈Q,P+Q={3,4,8}當(dāng)a=5時,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故選C3.已知橢圓中心在原點,一個焦點為(3,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是______.答案:根據(jù)題意知a=2b,c=3又∵a2=b2+c2∴a2=4

b2=1∴x24+

y2=1故為:∴x24+

y2=1.4.已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實部為13,則復(fù)數(shù)z的虛部為______.答案:設(shè)復(fù)數(shù)的虛部是b,∵復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±2235.已知a>0,且a≠1,解關(guān)于x的不等式:

答案:①當(dāng)a>1時,原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時,原不等式解為{x|loga2≤x<0解析:原不等式等價于原不等式同解于7分由①②得1<ax<4,由③得從而1<ax≤210分①當(dāng)a>1時,原不等式解為{x|0<x≤loga2②當(dāng)0<a<1時,原不等式解為{x|loga2≤x<06.圓x2+y2=1在矩陣10012對應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點,P1(x′,y′)是P(x,y)在矩陣A=10012對應(yīng)變換作用下新曲線上的對應(yīng)點,則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.7.對任意實數(shù)x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是(

)。答案:48.設(shè)隨機變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()

A.

B.

C.

D.答案:C9.若直線的參數(shù)方程為(t為參數(shù)),則該直線的斜率為()

A.

B.2

C.1

D.-1答案:D10.關(guān)于直線a,b,c以及平面M,N,給出下面命題:

①若a∥M,b∥M,則a∥b

②若a∥M,b⊥M,則b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M

④若a⊥M,a∥N,則M⊥N,

其中正確命題的個數(shù)為()

A.0個

B.1個

C.2個

D.3個答案:C11.設(shè)點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因為點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.12.設(shè)ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結(jié)論,其中你認(rèn)為正確的是______.

①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結(jié)論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結(jié)論互否,故正確綜上③⑤兩結(jié)論正確故為③⑤13.在極坐標(biāo)系中,曲線ρ=4sinθ和ρcosθ=1相交于點A、B,則|AB|=______.答案:將其化為直角坐標(biāo)方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.14.如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且

DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7215.用數(shù)學(xué)歸納法證明:

對于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:證明:(1)當(dāng)n=1時,左邊=12+1=2,右邊=1×2×33=2,所以當(dāng)n=1時,命題成立;

…(2分)(2)設(shè)n=k時,命題成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)則當(dāng)n=k+1時,左邊=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以當(dāng)n=k+1時,命題成立.綜合(1)(2)得:對于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)16.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.17.已知隨機變量ξ服從二項分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A18.應(yīng)用反證法推出矛盾的推導(dǎo)過程中要把下列哪些作為條件使用()

①結(jié)論相反的判斷,即假設(shè)

②原命題的條件

③公理、定理、定義等

④原結(jié)論

A.①②

B.①②④

C.①②③

D.②③答案:C19.△ABC內(nèi)接于以O(shè)為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內(nèi)接于以O(shè)為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.20.直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點的直線方程為______.答案:∵直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(2,3),∴2a1+3b1+1=0,2a2+3b2+2=0.∴A(a1,b1),B(a2,b2)兩點都在直線2x+3y+1=0上,由于兩點確定一條直線,因此經(jīng)過A(a1,b1),B(a2,b2)兩點的直線方程即為2x+3y+1=0.故為:2x+3y+1=0.21.不等式的解集是

)A.B.C.D.答案:B解析:當(dāng)時,不等式成立;當(dāng)時,不等式可化為,解得綜上,原不等式解集為故選B22.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術(shù)平方根運算;“ABS()”表示求絕對值運算.23.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

A.若k2的觀測值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病

B.從獨立性檢驗可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時,我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤

D.以上三種說法都不正確答案:D24.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的()

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C25.空間向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,則y+z=______.答案:∵n⊥a,n⊥b,∴n?a=0n?b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故為3.26.已知隨機變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C27.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.28.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點,那么∠MFN必是()

A.銳角

B.直角

C.鈍角

D.以上皆有可能答案:B29.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.30.設(shè)函數(shù)f(x)的定義域為D,如果對于任意的x1∈D,存在唯一的x2∈D,使得

f(x1)+f(x2)2=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的均值為C,現(xiàn)在給出下列4個函數(shù):①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為

2的所有函數(shù)是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調(diào)遞增,對應(yīng)任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據(jù)三角函數(shù)的周期性可得,滿足sinx2=0的x2無窮多個,②錯誤③y=lgx在(0,+∞)單調(diào)遞增,對應(yīng)任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時x2不存在④錯誤故選D.31.某項選拔共有四輪考核,每輪設(shè)有一個問題,能正確回答問題者進(jìn)入下一輪考核,否則

即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;

(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.

(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.32.設(shè)直角三角形的三邊長分別為a,b,c(a<b<c),則“a:b:c=3:4:5”是“a,b,c成等差數(shù)列”的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分又非必要條件答案:∵直角三角形的三邊長分別為a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差數(shù)列.即“a:b:c=3:4:5”?“a,b,c成等差數(shù)列”.∵直角三角形的三邊長分別為a,b,c(a<b<c),a,b,c成等差數(shù)列,∴a2+b2=c22b=a+c,∴a2+a2+

c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差數(shù)列”?“a:b:c=3:4:5”.故選C.33.如圖,中心均為原點O的雙曲線與橢圓有公共焦點,M,N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M(jìn),N是雙曲線的兩頂點,M,O,N將橢圓長軸四等分∴橢圓的長軸長是雙曲線實軸長的2倍∵雙曲線與橢圓有公共焦點,∴雙曲線與橢圓的離心率的比值是2故選B.34.下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是()

A.①②B.①③C.①④D.②④答案:正方體的三視圖都相同,而三棱臺的三視圖各不相同,圓錐和正四棱錐的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論