2023屆安徽省馬鞍山市雨山建中學中考數學最后一模試卷含解析_第1頁
2023屆安徽省馬鞍山市雨山建中學中考數學最后一模試卷含解析_第2頁
2023屆安徽省馬鞍山市雨山建中學中考數學最后一模試卷含解析_第3頁
2023屆安徽省馬鞍山市雨山建中學中考數學最后一模試卷含解析_第4頁
2023屆安徽省馬鞍山市雨山建中學中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.

B.

C.

或D.2.-5的倒數是A. B.5 C.- D.-53.若函數與y=﹣2x﹣4的圖象的交點坐標為(a,b),則的值是()A.﹣4 B.﹣2 C.1 D.24.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.5.-3的相反數是()A. B.3 C. D.-36.在實數|﹣3|,﹣2,0,π中,最小的數是()A.|﹣3| B.﹣2 C.0 D.π7.已知是二元一次方程組的解,則的算術平方根為()A.±2 B. C.2 D.48.計算tan30°的值等于()A.3B.33C.339.2017年牡丹區(qū)政府工作報告指出:2012年以來牡丹區(qū)經濟社會發(fā)展取得顯著成就,綜合實力明顯提升,地區(qū)生產總值由156.3億元增加到338億元,年均可比增長11.4%,338億用科學記數法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×101010.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.511.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a612.把不等式組的解集表示在數軸上,下列選項正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知點A(4,y1),B(,y2),C(-2,y3)都在二次函數y=(x-2)2-1的圖象上,則y1,y2,y3的大小關系是.14.如果把拋物線y=2x2﹣1向左平移1個單位,同時向上平移4個單位,那么得到的新的拋物線是_____.15.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出2個球,都是黃球的概率為.16.已知,如圖,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,則AC=.17.如圖,線段AB=10,點P在線段AB上,在AB的同側分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.18.在△ABC中,MN∥BC分別交AB,AC于點M,N;若AM=1,MB=2,BC=3,則MN的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)《楊輝算法》中有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多了多少步?20.(6分)如圖,已知函數(x>0)的圖象經過點A、B,點B的坐標為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數y=ax+b的圖象經過點A、D,與x軸的負半軸交于點E.若AC=OD,求a、b的值;若BC∥AE,求BC的長.21.(6分)如圖,在平面直角坐標系中,二次函數的圖象與軸交于,兩點,與軸交于點,點的坐標為.(1)求二次函數的解析式;(2)若點是拋物線在第四象限上的一個動點,當四邊形的面積最大時,求點的坐標,并求出四邊形的最大面積;(3)若為拋物線對稱軸上一動點,直接寫出使為直角三角形的點的坐標.22.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結DE,OE、OD,求證:DE是⊙O的切線.23.(8分)2018年大唐芙蓉園新春燈會以“鼓舞中華”為主題,既有新年韻味,又結合“一帶一路”展示了絲綢之路上古今文化經貿繁榮的盛況。小麗的爸爸買了兩張門票,她和各個兩人都想去觀看,可是爸爸只能帶一人去,于是讀九年級的哥哥提議用他們3人吃飯的彩色筷子做游戲(筷子除顏色不同,其余均相同),其中小麗的筷子顏色是紅色,哥哥的是銀色,爸爸的是白色,將3人的3雙款子全部放在一個不透明的筷簍里搖勻,小麗隨機從筷簍里取出一根,記下顏色放回,然后哥哥同樣從筷簍里取出一根,若兩人取出的筷子顏色相同則小麗去,若不同,則哥哥去。(1)求小麗隨機取出一根筷子是紅色的概率;(2)請用列表或畫樹狀圖的方法求出小隨爸爸去看新春燈會的概率。24.(10分)如圖,一次函數的圖象與反比例函數(為常數,且)的圖象交于A(1,a)、B兩點.求反比例函數的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.25.(10分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.26.(12分)如圖,點在線段上,,,.求證:.27.(12分)在平面直角坐標系中,△ABC的頂點坐標是A(﹣2,3),B(﹣4,﹣1),C(2,0).點P(m,n)為△ABC內一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.(1)畫出△A1B1C1(2)將△ABC繞坐標點C逆時針旋轉90°得到△A2B2C,畫出△A2B2C;(3)在(2)的條件下求BC掃過的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經過點時,拋物線的開口最小,取得最大值拋物線經過△ABC區(qū)域(包括邊界),的取值范圍是:當時,拋物線經過點時,拋物線的開口最小,取得最小值拋物線經過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點睛:二次函數二次項系數決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.2、C【解析】

若兩個數的乘積是1,我們就稱這兩個數互為倒數.【詳解】解:5的倒數是.故選C.3、B【解析】

求出兩函數組成的方程組的解,即可得出a、b的值,再代入求值即可.【詳解】解方程組,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交點坐標是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故選B.【點睛】本題考查了一次函數與反比例函數的交點問題和解方程組等知識點,關鍵是求出a、b的值.4、D【解析】

找到從正面看所得到的圖形即可,注意所有看到的棱都應表現在主視圖中.【詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.

故選A.【點睛】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.5、B【解析】

根據相反數的定義與方法解答.【詳解】解:-3的相反數為.故選:B.【點睛】本題考查相反數的定義與求法,熟練掌握方法是關鍵.6、B【解析】

直接利用利用絕對值的性質化簡,進而比較大小得出答案.【詳解】在實數|-3|,-1,0,π中,|-3|=3,則-1<0<|-3|<π,故最小的數是:-1.故選B.【點睛】此題主要考查了實數大小比較以及絕對值,正確掌握實數比較大小的方法是解題關鍵.7、C【解析】二元一次方程組的解和解二元一次方程組,求代數式的值,算術平方根.【分析】∵是二元一次方程組的解,∴,解得.∴.即的算術平方根為1.故選C.8、C【解析】tan30°=339、D【解析】

根據科學記數法的定義可得到答案.【詳解】338億=33800000000=,故選D.【點睛】把一個大于10或者小于1的數表示為的形式,其中1≤|a|<10,這種記數法叫做科學記數法.10、C【解析】

根據AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據正方形內角及角平分線進行角度轉換證明EG=EB,FG=FB,即可判定②選項;設OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,FG=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質,相似三角形,菱形的判定與性質等四邊形的綜合題.該題難度較大,需要學生對有關于四邊形的性質的知識有一系統(tǒng)的掌握.11、D【解析】

根據合并同類項法則判斷A、C;根據積的乘方法則判斷B;根據冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質和運算法則是解題的關鍵.12、C【解析】

求得不等式組的解集為x<﹣1,所以C是正確的.【詳解】解:不等式組的解集為x<﹣1.故選C.【點睛】本題考查了不等式問題,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y3>y1>y2.【解析】試題分析:將A,B,C三點坐標分別代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考點:二次函數的函數值比較大小.14、y=2(x+1)2+1.【解析】原拋物線的頂點為(0,-1),向左平移1個單位,同時向上平移4個單位,那么新拋物線的頂點為(-1,1);可設新拋物線的解析式為y=2(x-h)2+k,代入得:y=2(x+1)2+1.15、【解析】

讓黃球的個數除以球的總個數即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出2個球是黃球的概率是.

故答案為:.【點睛】本題考查了概率的基本計算,用到的知識點為:概率等于所求情況數與總情況數之比.16、1【解析】試題分析:根據DE∥FG∥BC可得△ADE∽△AFG∽ABC,根據題意可得EG:AC=DF:AB=2:6=1:3,根據EG=3,則AC=1.考點:三角形相似的應用.17、2【解析】

設MN=y,PC=x,根據正方形的性質和勾股定理列出y1關于x的二次函數關系式,求二次函數的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質、勾股定理、二次函數的最值.熟練掌握勾股定理和二次函數的最值是解決問題的關鍵.18、1【解析】

∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、12【解析】

設矩形的長為x步,則寬為(60﹣x)步,根據題意列出方程,求出方程的解即可得到結果.【詳解】解:設矩形的長為x步,則寬為(60﹣x)步,依題意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合題意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),則該矩形的長比寬多12步.【點睛】此題考查了一元二次方程的應用,找出題中的等量關系是解本題的關鍵.20、(1)a=,b=2;(2)BC=.【解析】試題分析:(1)首先利用反比例函數圖象上點的坐標性質得出k的值,再得出A、D點坐標,進而求出a,b的值;(2)設A點的坐標為:(m,),則C點的坐標為:(m,0),得出tan∠ADF=,tan∠AEC=,進而求出m的值,即可得出答案.試題解析:(1)∵點B(2,2)在函數y=(x>0)的圖象上,∴k=4,則y=,∵BD⊥y軸,∴D點的坐標為:(0,2),OD=2,∵AC⊥x軸,AC=OD,∴AC=3,即A點的縱坐標為:3,∵點A在y=的圖象上,∴A點的坐標為:(,3),∵一次函數y=ax+b的圖象經過點A、D,∴,解得:,b=2;(2)設A點的坐標為:(m,),則C點的坐標為:(m,0),∵BD∥CE,且BC∥DE,∴四邊形BCED為平行四邊形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF=,在Rt△ACE中,tan∠AEC=,∴=,解得:m=1,∴C點的坐標為:(1,0),則BC=.考點:反比例函數與一次函數的交點問題.21、(1);(2)P點坐標為,;(3)或或或.【解析】

(1)根據待定系數法把A、C兩點坐標代入可求得二次函數的解析式;

(2)由拋物線解析式可求得B點坐標,由B、C坐標可求得直線BC解析式,可設出P點坐標,用P點坐標表示出四邊形ABPC的面積,根據二次函數的性質可求得其面積的最大值及P點坐標;

(3)首先設出Q點的坐標,則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數的解析式為;(2)在中,令可得,解得或,,且,∴經過、兩點的直線為,設點的坐標為,如圖,過點作軸,垂足為,與直線交于點,則,,∴當時,四邊形的面積最大,此時P點坐標為,∴四邊形的最大面積為;(3),∴對稱軸為,∴可設點坐標為,,,,,,為直角三角形,∴有、和三種情況,①當時,則有,即,解得或,此時點坐標為或;②當時,則有,即,解得,此時點坐標為;③當時,則有,即,解得,此時點坐標為;綜上可知點的坐標為或或或.【點睛】本題考查了待定系數法、三角形的面積、二次函數的性質、勾股定理、方程思想及分類討論思想等知識,注意分類討論思想的應用.22、詳見解析.【解析】試題分析:由三角形的中位線得出OE∥AB,進一步利用平行線的性質和等腰三角形性質,找出△OCE和△ODE相等的線段和角,證得全等得出答案即可.試題解析:證明:∵點E為AC的中點,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切線.點睛:此題考查切線的判定.證明的關鍵是得到△OCE≌△ODE.23、(1);(2).【解析】

(1)直接利用概率公式計算;(2)畫樹狀圖展示所有36種等可能的結果數,再找出兩人取出的筷子顏色相同的結果數,然后根據概率公式求解.【詳解】(1)小麗隨機取出一根筷子是紅色的概率==;(2)畫樹狀圖為:共有36種等可能的結果數,其中兩人取出的筷子顏色相同的結果數為12,所以小麗隨爸爸去看新春燈會的概率==.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式計算事件A或事件B的概率.24、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數圖象上,結合一次函數解析式可求出點A的坐標,再由點A的坐標利用待定系數法即可求出反比例函數解析式,聯(lián)立兩函數解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結合點B的坐標找出點D的坐標,設直線AD的解析式為y=mx+n,結合點A、D的坐標利用待定系數法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結合三角形的面積公式即可得出結論.試題解析:(1)把點A(1,a)代入一次函數y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標為(1,3).把點A(1,3)代入反比例函數y=,得:3=k,∴反比例函數的表達式y(tǒng)=,聯(lián)立兩個函數關系式成方程組得:,解得:,或,∴點B的坐標為(3,1).(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.∵點B、D關于x軸對稱,點B的坐標為(3,1),∴點D的坐標為(3,-1).設直線AD的解析式為y=mx+n,把A,D兩點代入得:,解得:,∴直線AD的解析式為y=-2x+1.令y=-2x+1中y=0,則-2x+1=0,解得:x=,∴點P的坐標為(,0).S△PAB=S△ABD-S△PBD=BD?(xB-xA)-BD?(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考點:1.反比例函數與一次函數的交點問題;2.待定系數法求一次函數解析式;3.軸對稱-最短路線問題.25、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據平行四邊形的性質得出∠ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論