2023屆四川省瀘州市市合江縣合江天立學(xué)校高考仿真模擬數(shù)學(xué)試卷含解析_第1頁
2023屆四川省瀘州市市合江縣合江天立學(xué)校高考仿真模擬數(shù)學(xué)試卷含解析_第2頁
2023屆四川省瀘州市市合江縣合江天立學(xué)校高考仿真模擬數(shù)學(xué)試卷含解析_第3頁
2023屆四川省瀘州市市合江縣合江天立學(xué)校高考仿真模擬數(shù)學(xué)試卷含解析_第4頁
2023屆四川省瀘州市市合江縣合江天立學(xué)校高考仿真模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.2.已知集合,則等于()A. B. C. D.3.已知,,,,則()A. B. C. D.4.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.5.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.6.已知是虛數(shù)單位,若,則()A. B.2 C. D.107.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.8.函數(shù)的大致圖象為()A. B.C. D.9.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.10.等比數(shù)列若則()A.±6 B.6 C.-6 D.11.函數(shù)的圖象在點(diǎn)處的切線為,則在軸上的截距為()A. B. C. D.12.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點(diǎn),則的最大值是()A. B.1 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.14.對于任意的正數(shù),不等式恒成立,則的最大值為_____.15.在棱長為的正方體中,是正方形的中心,為的中點(diǎn),過的平面與直線垂直,則平面截正方體所得的截面面積為______.16.已知三棱錐的四個頂點(diǎn)都在球的球面上,,則球的表面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點(diǎn)N到平面CDM的距離.18.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅(jiān)持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.19.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對任意的和恒成立,求實(shí)數(shù)的取值范圍.20.(12分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),為數(shù)列的前項(xiàng)和,記,證明:.21.(12分)已知函數(shù),.(1)若曲線在點(diǎn)處的切線方程為,求,;(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.22.(10分)4月23日是“世界讀書日”,某中學(xué)開展了一系列的讀書教育活動.學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學(xué)生只能參加一個讀書小組)學(xué)生抽取12名學(xué)生參加問卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學(xué)生中隨機(jī)抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.2、C【解析】

先化簡集合A,再與集合B求交集.【詳解】因?yàn)?,,所?故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.3、D【解析】

令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時(shí),令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點(diǎn)睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.4、B【解析】

利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識的綜合應(yīng)用.5、A【解析】

利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.6、C【解析】

根據(jù)復(fù)數(shù)模的性質(zhì)計(jì)算即可.【詳解】因?yàn)椋?,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.7、B【解析】

求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點(diǎn).由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點(diǎn),令,則,令,則問題即在上有零點(diǎn),由于在上遞增,所以的取值范圍是.故選:B【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點(diǎn)問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.8、A【解析】

利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.【點(diǎn)睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點(diǎn),采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.9、B【解析】

根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.10、B【解析】

根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡單應(yīng)用,注意項(xiàng)的符號特征,屬于基礎(chǔ)題.11、A【解析】

求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.12、D【解析】

如圖所示建立直角坐標(biāo)系,設(shè),則,計(jì)算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時(shí)等號成立.故選:.【點(diǎn)睛】本題考查了向量的計(jì)算,建立直角坐標(biāo)系利用坐標(biāo)計(jì)算是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、55【解析】

由求出.由,可得,兩式相減,可得數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時(shí),,當(dāng)時(shí),由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.14、【解析】

根據(jù)均為正數(shù),等價(jià)于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價(jià)于恒成立,令則,當(dāng)且僅當(dāng)即時(shí)取得等號,故的最大值為.故答案為:【點(diǎn)睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進(jìn)行等價(jià)變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.15、【解析】

確定平面即為平面,四邊形是菱形,計(jì)算面積得到答案.【詳解】如圖,在正方體中,記的中點(diǎn)為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點(diǎn)共面,記的中點(diǎn)為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因?yàn)檎襟w的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點(diǎn)睛】本題考查了正方體的截面面積,意在考查學(xué)生的空間想象能力和計(jì)算能力.16、【解析】

如圖所示,將三棱錐補(bǔ)成長方體,球?yàn)殚L方體的外接球,長、寬、高分別為,計(jì)算得到,得到答案.【詳解】如圖所示,將三棱錐補(bǔ)成長方體,球?yàn)殚L方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點(diǎn)睛】本題考查了三棱錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力,將三棱錐補(bǔ)成長方體是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)因?yàn)檎叫蜛BCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因?yàn)槠矫鍭BMN,平面ABMN,所以,,因?yàn)?,所以,因?yàn)?,所以,所以,因?yàn)樵谥苯翘菪蜛BMN中,,所以,所以,所以,因?yàn)?,所以平面.?)如圖,取BM的中點(diǎn)E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以NE∥CD,因?yàn)槠矫鍯DM,平面CDM,所以NE∥平面CDM,所以點(diǎn)N到平面CDM的距離與點(diǎn)E到平面CDM的距離相等,設(shè)點(diǎn)N到平面CDM的距離為h,由可得點(diǎn)B到平面CDM的距離為2h,由題易得平面BCM,所以,且,所以,又,所以由可得,解得,所以點(diǎn)N到平面CDM的距離為.18、(1);(2)①可能是2件;②詳見解析【解析】

(1)由一件手工藝品質(zhì)量為B級的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點(diǎn)睛】本題考查相互獨(dú)立事件的概率計(jì)算,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計(jì)算求解能力,屬于中檔題.19、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問題進(jìn)行等價(jià)轉(zhuǎn)化為,,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實(shí)數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當(dāng)時(shí),,當(dāng)時(shí),在上恒成立,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),由得:;由得:.∴當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對任意的和,恒成立等價(jià)于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴當(dāng)時(shí),,即又∵,∴實(shí)數(shù)的取值范圍是:.【點(diǎn)睛】本題主要考查導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和恒成立問題,考查分類討論的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識,屬于中等題.20、(Ⅰ),;(Ⅱ)見解析【解析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項(xiàng)相消法求,即可得到本題答案.【詳解】(Ⅰ)因?yàn)閿?shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因?yàn)?,所以?【點(diǎn)睛】本題主要考查等差等比數(shù)列的綜合應(yīng)用,以及用裂項(xiàng)相消法求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.21、(1);(2)【解析】

(1)對函數(shù)求導(dǎo),運(yùn)用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【詳解】(1)由題得,因?yàn)樵邳c(diǎn)與相切所以,∴(2)由得,令,只需,設(shè)(),當(dāng)時(shí),,在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),開口向上,對稱軸為,,所以在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),二次函數(shù)開口向下,且,所以在時(shí)有一個零點(diǎn),在時(shí),在時(shí),①當(dāng)即時(shí),在小于零,所以在時(shí)為減函數(shù),所以,符合題意;②當(dāng)即時(shí),在大于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論