版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.設(shè),則(
)A.10 B.11 C.12 D.134.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點(diǎn);則下列命題為真命題的是()A. B. C. D.5.已知滿足,,,則在上的投影為()A. B. C. D.26.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨(dú)特,神獸人們喜愛.下圖即是一副窗花,是把一個(gè)邊長為12的大正方形在四個(gè)角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個(gè)角處再剪出邊長全為1的一些小正方形.若在這個(gè)窗花內(nèi)部隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)不落在任何一個(gè)小正方形內(nèi)的概率是()A. B. C. D.7.設(shè)函數(shù),若在上有且僅有5個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.8.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.49.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④10.在中,,,,為的外心,若,,,則()A. B. C. D.11.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.412.函數(shù)的一個(gè)單調(diào)遞增區(qū)間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的實(shí)部為____________.14.曲線在點(diǎn)(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實(shí)數(shù)=____。15.已知,如果函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是____________16.已知多項(xiàng)式的各項(xiàng)系數(shù)之和為32,則展開式中含項(xiàng)的系數(shù)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)分別為的內(nèi)角的對邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時(shí),求的周長.18.(12分)已知(1)當(dāng)時(shí),判斷函數(shù)的極值點(diǎn)的個(gè)數(shù);(2)記,若存在實(shí)數(shù),使直線與函數(shù)的圖象交于不同的兩點(diǎn),求證:.19.(12分)已知中,角所對邊的長分別為,且(1)求角的大??;(2)求的值.20.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對稱,又函數(shù)在處的切線與垂直,求實(shí)數(shù)的值;(2)若函數(shù),則當(dāng),時(shí),求證:①;②.21.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.22.(10分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實(shí)數(shù)取何值,直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)若直線經(jīng)過點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù)并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個(gè)交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個(gè)交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會(huì)大大增加,甚至沒法求解.2、D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.3、B【解析】
根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.4、A【解析】
先分別判斷每一個(gè)命題的真假,再利用復(fù)合命題的真假判斷確定答案即可.【詳解】當(dāng)時(shí),直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當(dāng)直線和直線互相垂直時(shí),,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當(dāng)時(shí),沒有零點(diǎn),所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點(diǎn)睛】本題主要考查充要條件的判斷和兩直線的位置關(guān)系,考查二次函數(shù)的圖象,考查學(xué)生對這些知識的理解掌握水平.5、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.6、D【解析】
由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點(diǎn)睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.7、A【解析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時(shí),,∵在上有且僅有5個(gè)零點(diǎn),∴,∴.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.8、B【解析】
設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【詳解】設(shè)數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,屬于基礎(chǔ)題.9、B【解析】
由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).10、B【解析】
首先根據(jù)題中條件和三角形中幾何關(guān)系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因?yàn)?,所以,又因?yàn)椋?,,由題可知,所以,,所以.故選:D.【點(diǎn)睛】本題主要考查了三角形外心的性質(zhì),正弦定理,平面向量分解定理,屬于一般題.11、C【解析】
根據(jù)對稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對稱性的應(yīng)用,屬于中檔題.12、D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時(shí),D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復(fù)數(shù)的概念與復(fù)數(shù)的除法運(yùn)算計(jì)算即可得到答案.【詳解】,所以復(fù)數(shù)的實(shí)部為2.故答案為:2【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.14、或1【解析】
利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點(diǎn),由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點(diǎn)為,,切線與的交點(diǎn)為,可得,解得或?!军c(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運(yùn)用,三角形的面積求法。15、【解析】
首先把零點(diǎn)問題轉(zhuǎn)化為方程問題,等價(jià)于有三個(gè)零點(diǎn),兩側(cè)開方,可得,即有三個(gè)零點(diǎn),再運(yùn)用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個(gè)零點(diǎn),即零點(diǎn)有,顯然,則有,可得,即有三個(gè)零點(diǎn),不妨令,對于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當(dāng)時(shí),,當(dāng)時(shí),,此時(shí)函數(shù)若有兩個(gè)零點(diǎn),則有,綜上可知,若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)的零點(diǎn),恰當(dāng)?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點(diǎn)問題,注意恰有三個(gè)零點(diǎn)條件的應(yīng)用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.16、【解析】
令可得各項(xiàng)系數(shù)和為,得出,根據(jù)第一個(gè)因式展開式的常數(shù)項(xiàng)與第二個(gè)因式的展開式含一次項(xiàng)的積與第一個(gè)因式展開式含x的一次項(xiàng)與第二個(gè)因式常數(shù)項(xiàng)的積的和即為展開式中含項(xiàng),可得解.【詳解】令,則得,解得,所以展開式中含項(xiàng)為:,故答案為:【點(diǎn)睛】本題主要考查了二項(xiàng)展開式的系數(shù)和,二項(xiàng)展開式特定項(xiàng),賦值法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時(shí),最大,結(jié)合(1)中條件,即可求出最大時(shí),對應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長.【詳解】(1)由,得,即.因?yàn)?,所?由,得.(2)因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號成立.因?yàn)榈拿娣e.所以當(dāng)時(shí),的面積取得最大值,此時(shí),則,所以的周長為.【點(diǎn)睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力.18、(1)沒有極值點(diǎn);(2)證明見解析【解析】
(1)求導(dǎo)可得,再求導(dǎo)可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設(shè),則可整理為,設(shè),利用導(dǎo)函數(shù)可得,即可求證.【詳解】(1)當(dāng)時(shí),,,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點(diǎn).(2)由題,,若存在實(shí)數(shù),使直線與函數(shù)的圖象交于不同的兩點(diǎn),即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設(shè),那么,所以,所以,即【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求函數(shù)的極值點(diǎn),考查利用導(dǎo)函數(shù)解決雙變量問題,考查運(yùn)算能力與推理論證能力.19、(1);(2).【解析】
(1)正弦定理的邊角轉(zhuǎn)換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構(gòu)造齊次式,利用正弦定理的邊角轉(zhuǎn)換,得到,結(jié)合余弦定理得到【詳解】解:(1)由已知,得又∵∴∴,因?yàn)榈谩摺?(2)∵又由余弦定理,得∴【點(diǎn)睛】1.考查學(xué)生對正余弦定理的綜合應(yīng)用;2.能處理基本的邊角轉(zhuǎn)換問題;3.能利用特殊的三角函數(shù)值推特殊角,屬于中檔題20、(1)(2)①證明見解析②證明見解析【解析】
(1)首先根據(jù)直線關(guān)于直線對稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時(shí),,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡后得到.【詳解】(1)由解得必過與的交點(diǎn).在上取點(diǎn),易得點(diǎn)關(guān)于對稱的點(diǎn)為,即為直線,所以的方程為,即,其斜率為.又因?yàn)?,所以,,由題意,解得.(2)因?yàn)?,所?①令,則,則,且,,時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.因?yàn)?,所以,因?yàn)?,所以存在,使時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.又,所以時(shí),,即,所以,即成立.②由①知成立,即有成立.令,即.所以時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減,所以,即,因?yàn)?,所以,所以時(shí),,即時(shí),.【點(diǎn)睛】本小題考查函數(shù)圖象的對稱性,利用導(dǎo)數(shù)求切線的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識;考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應(yīng)用意識.21、(1)當(dāng)時(shí),遞增區(qū)間時(shí),無遞減區(qū)間,當(dāng)時(shí),遞增區(qū)間時(shí),遞減區(qū)間時(shí);(2)或.【解析】
(1)求出,對分類討論,先考慮(或)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人康復(fù)訓(xùn)練指導(dǎo)制度
- 《服務(wù)成就價(jià)值》課件
- 技術(shù)合同范本
- 2024年塔吊司機(jī)安全操作培訓(xùn)與勞動(dòng)權(quán)益保障協(xié)議3篇
- 6 《哈姆萊特(節(jié)選)》(學(xué)案)-教案課件-部編高中語文必修下冊
- 2024年生日蛋糕定制與航空旅行禮品合作合同2篇
- 《脊柱區(qū)局部解剖學(xué)》課件
- 2025年湖北貨運(yùn)上崗證模擬考試題
- 2024年水路貨物運(yùn)輸節(jié)能減排管理細(xì)則合同3篇
- 2025年太原貨運(yùn)從業(yè)資格考試模擬考試題目及答案
- 結(jié)核菌素(PPD)試驗(yàn)詳解課件
- 皖醫(yī)大內(nèi)科學(xué)習(xí)題及答案
- 領(lǐng)導(dǎo)干部政治素質(zhì)考察測評表(示范填寫表)
- 醫(yī)療機(jī)構(gòu)工作人員廉潔從業(yè)九項(xiàng)準(zhǔn)則培訓(xùn)考核試題附答案
- 水庫大壩碾壓瀝青混凝土防滲面板施工工藝
- 幼兒園中班數(shù)學(xué):《水果列車》 課件
- 風(fēng)濕免疫科醫(yī)療質(zhì)量控制指標(biāo)(2022版)
- 光伏電站危險(xiǎn)及有害因素辨識
- 辦公用品請購單
- 花卉分類與識別
- 我們身邊的人工智能-完整精講版課件
評論
0/150
提交評論