2023屆新余市重點中學中考數(shù)學考試模擬沖刺卷含解析_第1頁
2023屆新余市重點中學中考數(shù)學考試模擬沖刺卷含解析_第2頁
2023屆新余市重點中學中考數(shù)學考試模擬沖刺卷含解析_第3頁
2023屆新余市重點中學中考數(shù)學考試模擬沖刺卷含解析_第4頁
2023屆新余市重點中學中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數(shù)是()A.90° B.60° C.45° D.30°2.小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家.媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標系中,小亮和媽媽的行進路程s(km)與時間t(h)的函數(shù)圖象如圖所示.根據(jù)圖象得出下列結論,其中錯誤的是()A.小亮騎自行車的平均速度是12km/hB.媽媽比小亮提前0.5h到達姥姥家C.媽媽在距家12km處追上小亮D.9:30媽媽追上小亮3.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.4.甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.1.其中說法正確的有()A.4個 B.3個 C.2個 D.1個5.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.6.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.7.如圖,點P是以O為圓心,AB為直徑的半圓上的動點,AB=2,設弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是A.B.C.D.8.如圖,BC⊥AE于點C,CD∥AB,∠B=55°,則∠1等于()A.35° B.45° C.55° D.25°9.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣210.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<yA.①② B.②③ C.②④ D.①③④11.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動點P從點A開始沿AB向點B以1cm/s的速度移動,動點Q從點B開始沿BC向點C以2cm/s的速度移動,若P,Q兩點分別從A,B兩點同時出發(fā),P點到達B點運動停止,則△PBQ的面積S隨出發(fā)時間t的函數(shù)關系圖象大致是()A. B. C. D.12.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一組“數(shù)值轉換機”按下面的程序計算,如果輸入的數(shù)是36,則輸出的結果為106,要使輸出的結果為127,則輸入的最小正整數(shù)是__________.14.如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+15.圓柱的底面半徑為1,母線長為2,則它的側面積為_____.(結果保留π)16.若a,b互為相反數(shù),則a2﹣b2=_____.17.已知函數(shù)y=-1,給出一下結論:①y的值隨x的增大而減?、诖撕瘮?shù)的圖形與x軸的交點為(1,0)③當x>0時,y的值隨x的增大而越來越接近-1④當x≤時,y的取值范圍是y≥1以上結論正確的是_________(填序號)18.在平面直角坐標系xOy中,若干個半徑為1個單位長度,圓心角是的扇形按圖中的方式擺放,動點K從原點O出發(fā),沿著“半徑OA弧AB弧BC半徑CD半徑DE”的曲線運動,若點K在線段上運動的速度為每秒1個單位長度,在弧線上運動的速度為每秒個單位長度,設第n秒運動到點K,為自然數(shù),則的坐標是____,的坐標是____三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結合圖中所給信息解答下列問題:(1)本次共調查名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是;(2)補全條形統(tǒng)計圖;(3)該校共有800名學生,根據(jù)以上信息,請你估計全校學生中對這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調查,數(shù)學課外實踐小組的學生對交通法規(guī)有了更多的認識,學校準備從組內的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.20.(6分)已知:四邊形ABCD是平行四邊形,點O是對角線AC、BD的交點,EF過點O且與AB、CD分別相交于點E、F,連接EC、AF.(1)求證:DF=EB;(2)AF與圖中哪條線段平行?請指出,并說明理由.21.(6分)我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數(shù),參考數(shù)據(jù)≈1.732)22.(8分)如圖,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺規(guī)作圖:過點M作直線MN∥OB交AB于點N(不寫作法,保留作圖痕跡);(1)若M為AO的中點,求AM的長.23.(8分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.24.(10分)我市某中學決定在八年級陽光體育“大課間”活動中開設A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統(tǒng)計圖.請結合圖中的信息解答下列問題:(1)在這項調查中,共調查了多少名學生?(2)將兩個統(tǒng)計圖補充完整;(3)若調查到喜歡“立定跳遠”的5名學生中有3名男生,2名女生.現(xiàn)從這5名學生中任意抽取2名學生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.25.(10分)全民健身運動已成為一種時尚,為了解揭陽市居民健身運動的情況,某健身館的工作人員開展了一項問卷調查,問卷內容包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散步;E:不運動.以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分,運動形式ABCDE人數(shù)請你根據(jù)以上信息,回答下列問題:接受問卷調查的共有人,圖表中的,.統(tǒng)計圖中,類所對應的扇形的圓心角的度數(shù)是度.揭陽市環(huán)島路是市民喜愛的運動場所之一,每天都有“暴走團”活動,若某社區(qū)約有人,請你估計一下該社區(qū)參加環(huán)島路“暴走團”的人數(shù).26.(12分)如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;(2)直線m上存在一點P,使△APB的周長最??;①在直線m上作出該點P;(保留畫圖痕跡)②△APB的周長的最小值為.(直接寫出結果)27.(12分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

首先連接AB,由題意易證得△AOB是等邊三角形,根據(jù)等邊三角形的性質,可求得∠AOB的度數(shù).【詳解】連接AB,根據(jù)題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.2、D【解析】

根據(jù)函數(shù)圖象可知根據(jù)函數(shù)圖象小亮去姥姥家所用時間為10﹣8=2小時,進而得到小亮騎自行車的平均速度,對應函數(shù)圖象,得到媽媽到姥姥家所用的時間,根據(jù)交點坐標確定媽媽追上小亮所用時間,即可解答.【詳解】解:A、根據(jù)函數(shù)圖象小亮去姥姥家所用時間為10﹣8=2小時,∴小亮騎自行車的平均速度為:24÷2=12(km/h),故正確;B、由圖象可得,媽媽到姥姥家對應的時間t=9.5,小亮到姥姥家對應的時間t=10,10﹣9.5=0.5(小時),∴媽媽比小亮提前0.5小時到達姥姥家,故正確;C、由圖象可知,當t=9時,媽媽追上小亮,此時小亮離家的時間為9﹣8=1小時,∴小亮走的路程為:1×12=12km,∴媽媽在距家12km出追上小亮,故正確;D、由圖象可知,當t=9時,媽媽追上小亮,故錯誤;故選D.【點睛】本題考查函數(shù)圖像的應用,從圖像中讀取關鍵信息是解題的關鍵.3、D【解析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關,因而求一個角的函數(shù)值,可以轉化為求與它相等的其它角的三角函數(shù)值.4、B【解析】

根據(jù)題意,兩車距離為函數(shù),由圖象可知兩車起始距離為80,從而得到乙車速度,根據(jù)圖象變化規(guī)律和兩車運動狀態(tài),得到相關未知量.【詳解】由圖象可知,乙出發(fā)時,甲乙相距80km,2小時后,乙車追上甲.則說明乙每小時比甲快40km,則乙的速度為120km/h.①正確;由圖象第2﹣6小時,乙由相遇點到達B,用時4小時,每小時比甲快40km,則此時甲乙距離4×40=160km,則m=160,②正確;當乙在B休息1h時,甲前進80km,則H點坐標為(7,80),③正確;乙返回時,甲乙相距80km,到兩車相遇用時80÷(120+80)=0.4小時,則n=6+1+0.4=7.4,④錯誤.故選B.【點睛】本題以函數(shù)圖象為背景,考查雙動點條件下,兩點距離與運動時間的函數(shù)關系,解答時既要注意圖象變化趨勢,又要關注動點的運動狀態(tài).5、C【解析】

由正方形的性質知DG=CG-CD=2、AD∥GF,據(jù)此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,

∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,

∴DG=CG-CD=2,AD∥GF,

則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質,解題的關鍵是熟練掌握正方形的性質、相似三角形的判定與性質及勾股定理等知識點.6、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.7、A?!窘馕觥咳鐖D,∵根據(jù)三角形面積公式,當一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據(jù)勾股定理,得弦AP=x=?!喈攛=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應在y=的一半上方,從而可排除C選項。故選A。8、A【解析】

根據(jù)垂直的定義得到∠∠BCE=90°,根據(jù)平行線的性質求出∠BCD=55°,計算即可.【詳解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故選:A.【點睛】本題考查的是平行線的性質和垂直的定義,兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.9、D【解析】

根據(jù)一元二次方程根與系數(shù)的關系列出方程求解即可.【詳解】設方程的兩根分別為x1,x1,

∵x1+(k1-4)x+k-1=0的兩實數(shù)根互為相反數(shù),

∴x1+x1,=-(k1-4)=0,解得k=±1,

當k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實數(shù)根,所以k=1舍去;

當k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實數(shù)根;

∴k=-1.

故選D.【點睛】本題考查的是根與系數(shù)的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.10、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質,屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.11、C【解析】

根據(jù)題意表示出△PBQ的面積S與t的關系式,進而得出答案.【詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發(fā)時間t的函數(shù)關系圖象大致是二次函數(shù)圖象,開口向下.故選C.【點睛】此題主要考查了動點問題的函數(shù)圖象,正確得出函數(shù)關系式是解題關鍵.12、C【解析】

如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、15【解析】

分析:設輸出結果為y,觀察圖形我們可以得出x和y的關系式為:,將y的值代入即可求得x的值.詳解:∵當y=127時,解得:x=43;當y=43時,解得:x=15;當y=15時,解得不符合條件.則輸入的最小正整數(shù)是15.故答案為15.點睛:考查一元一次方程的應用,熟練掌握一元一次方程的應用是解題的關鍵.14、A【解析】

根據(jù)反比例函數(shù)圖象上點的坐標特征由A點坐標為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點的坐標特征、等腰直角三角形的性質和軸對稱的性質及會用求根公式法解一元二次方程.15、4【解析】

根據(jù)圓柱的側面積公式,計算即可.【詳解】圓柱的底面半徑為r=1,母線長為l=2,則它的側面積為S側=2πrl=2π×1×2=4π.故答案為:4π.【點睛】題考查了圓柱的側面積公式應用問題,是基礎題.16、1【解析】【分析】直接利用平方差公式分解因式進而結合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關鍵.17、②③【解析】(1)因為函數(shù)的圖象有兩個分支,在每個分支上y隨x的增大而減小,所以結論①錯誤;(2)由解得:,∴的圖象與x軸的交點為(1,0),故②中結論正確;(3)由可知當x>0時,y的值隨x的增大而越來越接近-1,故③中結論正確;(4)因為在中,當時,,故④中結論錯誤;綜上所述,正確的結論是②③.故答案為:②③.18、【解析】

設第n秒運動到Kn(n為自然數(shù))點,根據(jù)點K的運動規(guī)律找出部分Kn點的坐標,根據(jù)坐標的變化找出變化規(guī)律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此規(guī)律即可得出結論.【詳解】設第n秒運動到Kn(n為自然數(shù))點,觀察,發(fā)現(xiàn)規(guī)律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018為(1009,0).故答案為:(),(1009,0).【點睛】本題考查了規(guī)律型中的點的坐標,解題的關鍵是找出變化規(guī)律,本題屬于中檔題,解決該題型題目時,根據(jù)運動的規(guī)律找出點的坐標,根據(jù)坐標的變化找出坐標變化的規(guī)律是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學生中對這些交通法規(guī)“非常了解”的有320名;(4)甲和乙兩名學生同時被選中的概率為.【解析】【分析】(1)用A的人數(shù)以及所占的百分比就可以求出調查的總人數(shù),用C的人數(shù)除以調查的總人數(shù)后再乘以360度即可得;(2)根據(jù)D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補全條形統(tǒng)計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【詳解】(1)本次調查的學生總人數(shù)為24÷40%=60人,扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是360°×=90°,故答案為60、90°;(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+15+3)=18,補全條形圖如下:(3)估計全校學生中對這些交通法規(guī)“非常了解”的有800×40%=320名;(4)畫樹狀圖為:共有12種等可能的結果數(shù),其中甲和乙兩名學生同時被選中的結果數(shù)為2,所以甲和乙兩名學生同時被選中的概率為.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、列表法或樹狀圖法求概率、用樣本估計總體等,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中找到必要的有關聯(lián)的信息進行解題是關鍵.20、(1)見解析;(2)AF∥CE,見解析.【解析】

(1)直接利用全等三角三角形判定與性質進而得出△FOC≌△EOA(ASA),進而得出答案;(2)利用平行四邊形的判定與性質進而得出答案.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,點O是對角線AC、BD的交點,∴AO=CO,DC∥AB,DC=AB,∴∠FCA=∠CAB,在△FOC和△EOA中,∴△FOC≌△EOA(ASA),∴FC=AE,∴DC-FC=AB-AE,即DF=EB;(2)AF∥CE,理由:∵FC=AE,F(xiàn)C∥AE,∴四邊形AECF是平行四邊形,∴AF∥CE.【點睛】此題主要考查了平行四邊形的判定與性質以及全等三角形的判定與性質,正確得出△FOC≌△EOA(ASA)是解題關鍵.21、隧道最短為1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性質和三角函數(shù)解答即可.【詳解】如圖,作BD⊥AC于D,由題意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=,即,∴AD=400(米),在Rt△BCD中,∵tan45°=,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短為1093米.【點睛】本題考查了解直角三角形的應用,正確添加輔助線構建直角三角形是解題的關鍵.22、(1)詳見解析;(1).【解析】

(1)以點M為頂點,作∠AMN=∠O即可;(1)由∠AOB=45°,AB⊥OB,可知△AOB為等腰為等腰直角三角形,根據(jù)勾股定理求出OA的長,即可求出AM的值.【詳解】(1)作圖如圖所示;(1)由題知△AOB為等腰Rt△AOB,且OB=1,所以,AO=OB=1又M為OA的中點,所以,AM=1=【點睛】本題考查了尺規(guī)作圖,等腰直角三角形的判定,勾股定理等知識,熟練掌握作一個角等于已知角是解(1)的關鍵,證明△AOB為等腰為等腰直角三角形是解(1)的關鍵.23、(1)圓的半徑為4.5;(2)EF=.【解析】

(1)連接OD,根據(jù)垂徑定理得:DH=2,設圓O的半徑為r,根據(jù)勾股定理列方程可得結論;(2)過O作OG⊥AE于G,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.【詳解】(1)連接OD,∵直徑AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,設圓O的半徑為r,根據(jù)勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,則圓的半徑為4.5;(2)過O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【點睛】本題考查了垂徑定理,勾股定理,相似三角形的判定與性質,解答本題的關鍵是正確添加輔助線并熟練掌握垂徑定理和相似三角形的判定與性質.24、(1)50名;(2)補圖見解析;(3)剛好抽到同性別學生的概率是【解析】試題分析:(1)由題意可得本次調查的學生共有:15

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論