版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.2.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.43.設函數的定義域為,命題:,的否定是()A., B.,C., D.,4.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內部隨機取一個點,則該點不落在任何一個小正方形內的概率是()A. B. C. D.5.函數的圖象可能為()A. B.C. D.6.復數,是虛數單位,則下列結論正確的是A. B.的共軛復數為C.的實部與虛部之和為1 D.在復平面內的對應點位于第一象限7.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則8.設集合,,則().A. B.C. D.9.已知符號函數sgnxf(x)是定義在R上的減函數,g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]10.根據散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln211.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.9012.在中,,分別為,的中點,為上的任一點,實數,滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某種圓柱形的如罐的容積為個立方單位,當它的底面半徑和高的比值為______.時,可使得所用材料最省.14.過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準線交于點M,若,則l的斜率為______.15.在直三棱柱內有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.16.已知在等差數列中,,,前n項和為,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓C:x24+y2=1,F為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.18.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大??;(2)若,的面積為,求及的值.19.(12分)已知點為圓:上的動點,為坐標原點,過作直線的垂線(當、重合時,直線約定為軸),垂足為,以為極點,軸的正半軸為極軸建立極坐標系.(1)求點的軌跡的極坐標方程;(2)直線的極坐標方程為,連接并延長交于,求的最大值.20.(12分)函數,且恒成立.(1)求實數的集合;(2)當時,判斷圖象與圖象的交點個數,并證明.(參考數據:)21.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最小?22.(10分)已知函數.(1)當時,求的單調區(qū)間;(2)若函數有兩個極值點,,且,為的導函數,設,求的取值范圍,并求取到最小值時所對應的的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.2.C【解析】
根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.3.D【解析】
根據命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.4.D【解析】
由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應用,屬于基礎題.5.C【解析】
先根據是奇函數,排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數,故排除A,B,又,故選:C【點睛】本題主要考查函數的圖象,還考查了理解辨析的能力,屬于基礎題.6.D【解析】
利用復數的四則運算,求得,在根據復數的模,復數與共軛復數的概念等即可得到結論.【詳解】由題意,則,的共軛復數為,復數的實部與虛部之和為,在復平面內對應點位于第一象限,故選D.【點睛】復數代數形式的加減乘除運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化,其次要熟悉復數相關基本概念,如復數的實部為、虛部為、模為、對應點為、共軛為.7.D【解析】試題分析:,,故選D.考點:點線面的位置關系.8.D【解析】
根據題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,9.A【解析】
根據符號函數的解析式,結合f(x)的單調性分析即可得解.【詳解】根據題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數,當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數新定義問題,涉及函數單調性辨析,關鍵在于讀懂定義,根據自變量的取值范圍分類討論.10.B【解析】
將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數函數和二次函數的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數函數的最值,是基礎題,.11.A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.12.D【解析】
根據三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設圓柱的高為,底面半徑為,根據容積為個立方單位可得,再列出該圓柱的表面積,利用導數求出最值,從而進一步得到圓柱的底面半徑和高的比值.【詳解】設圓柱的高為,底面半徑為.∵該圓柱形的如罐的容積為個立方單位∴,即.∴該圓柱形的表面積為.令,則.令,得;令,得.∴在上單調遞減,在上單調遞增.∴當時,取得最小值,即材料最省,此時.故答案為:.【點睛】本題考查函數的應用,解答本題的關鍵是寫出表面積的表示式,再利用導數求函數的最值,屬中檔題.14.【解析】
分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,根據拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,由拋物線的定義知,,,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點睛】此題考查拋物線的定義,根據已知條件做出輔助線利用拋物線定義和幾何關系即可求解,屬于較易題目.15.【解析】
先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設球O1的半徑為,由題得,所以棱柱的側棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內切球和外接球問題,考查球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.16.39【解析】
設等差數列公差為d,首項為,再利用基本量法列式求解公差與首項,進而求得即可.【詳解】設等差數列公差為d,首項為,根據題意可得,解得,所以.故答案為:39【點睛】本題考查等差數列的基本量計算以及前n項和的公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(I)|FP|=2-32x【解析】
(I)直接利用兩點間距離公式化簡得到答案.(II)設Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點O到直線l的距離為d=m【點睛】本題考查了橢圓內的線段長度,定值問題,意在考查學生的計算能力和綜合應用能力.18.(1)(2);【解析】
(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因為,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.19.(1);(2)【解析】
(1)設的極坐標為,在中,有,即可得結果;(2)設射線:,,圓的極坐標方程為,聯立兩個方程,可求出,聯立可得,則計算可得,利用三角函數的性質可得最值.【詳解】(1)設的極坐標為,在中,有,點的軌跡的極坐標方程為;(2)設射線:,,圓的極坐標方程為,由得:,由得:,,,當,即時,,的最大值為.【點睛】本題考查極坐標方程的應用,考查三角函數性質的應用,是中檔題.20.(1);(2)2個,證明見解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點個數轉化為方程實數解的個數問題,然后構造函數,再利用導數討論此函數零點的個數.【詳解】(1)的定義域為,因為,1°當時,在上單調遞減,時,使得,與條件矛盾;2°當時,由,得;由,得,所以在上單調遞減,在上單調遞增,即有,由恒成立,所以恒成立,令,若;若;而時,,要使恒成立,故.(2)原問題轉化為方程實根個數問題,當時,圖象與圖象有且僅有2個交點,理由如下:由,即,令,因為,所以是的一根;,1°當時,,所以在上單調遞減,,即在上無實根;2°當時,,則在上單調遞遞增,又,所以在上有唯一實根,且滿足,①當時,在上單調遞減,此時在上無實根;②當時,在上單調遞增,,故在上有唯一實根.3°當時,由(1)知,在上單調遞增,所以,故,所以在上無實根.綜合1°,2°,3°,故有兩個實根,即圖象與圖象有且僅有2個交點.【點睛】此題考查不等式恒成立問題、函數與方程的轉化思想,考查導數的運用,屬于較難題.21.(1);(2)當BP為cm時,α+β取得最小值.【解析】
(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,根據得到,解得答案.(2)設BP=t,則,故,設,求導得到函數單調性,得到最值.【詳解】(1)作AE⊥CD,垂足為E,則CE=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年家具制造與供應協(xié)議
- 企業(yè)課件教學
- 2024奶牛養(yǎng)殖企業(yè)環(huán)保責任合同
- 2024年建筑工程裝飾分包合同文本
- 2024年工程建設項目中介服務簡約合同
- 2024蘇州汽車質押借款合同范本
- 公司行政部門經理工作總結
- 企業(yè)迎新晚會主持詞(6篇)
- 現代商務課件教學課件
- 英語課件簡約教學課件
- 中國食物成分表2018年(標準版)第6版
- 科普類公園設計方案
- 小學英語就業(yè)能力展示
- 心肌病和心肌炎課件
- 《艾滋病毒》課件
- 平陽港區(qū)西灣作業(yè)區(qū)防浪導流堤工程海域使用論證報告書
- 管道保溫計算公式
- 錄音行業(yè)的就業(yè)生涯發(fā)展報告
- 報廢汽車拆解工藝流程
- 生化報告解讀
- 胃癌科普講座課件
評論
0/150
提交評論