2022年江蘇省無錫市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2022年江蘇省無錫市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2022年江蘇省無錫市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2022年江蘇省無錫市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2022年江蘇省無錫市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年江蘇省無錫市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.

4.A.

B.

C.e-x

D.

5.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

6.極限等于().A.A.e1/2B.eC.e2D.1

7.

8.

9.

10.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.111.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

12.

13.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

14.A.A.2B.-1/2C.1/2eD.(1/2)e1/2

15.方程z=x2+y2表示的曲面是()

A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面16.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3

17.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

18.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)19.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex

B.axex

C.aex+bx

D.axex+bx

20.

二、填空題(20題)21.∫e-3xdx=__________。

22.交換二重積分次序=______.

23.

24.設(shè)y=cosx,則dy=_________。

25.

26.

27.

28.29.已知平面π:2x+y-3z+2=0,則過點(diǎn)(0,0,0)且與π垂直的直線方程為______.

30.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.

31.

32.33.設(shè)函數(shù)f(x)有連續(xù)的二階導(dǎo)數(shù)且f(0)=0,f'(0)=1,f''(0)=-2,則

34.

35.cosx為f(x)的一個(gè)原函數(shù),則f(x)=______.

36.冪級(jí)數(shù)的收斂半徑為______.

37.已知當(dāng)x→0時(shí),-1與x2是等價(jià)無窮小,則a=________。38.39.40.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為______.三、計(jì)算題(20題)41.

42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

43.

44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.45.求曲線在點(diǎn)(1,3)處的切線方程.46.

47.

48.49.50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

51.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

52.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

53.求微分方程y"-4y'+4y=e-2x的通解.

54.55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.求微分方程的通解.58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).59.將f(x)=e-2X展開為x的冪級(jí)數(shù).60.證明:四、解答題(10題)61.

62.

63.的面積A。64.將f(x)=sin3x展開為x的冪級(jí)數(shù),并指出其收斂區(qū)間。65.

66.

67.設(shè)y=y(x)由方程X2+2y3+2xy+3y-x=1確定,求y'.68.

69.

70.

五、高等數(shù)學(xué)(0題)71.求極限

六、解答題(0題)72.

參考答案

1.D解析:

2.D

3.A

4.A

5.C

6.C本題考查的知識(shí)點(diǎn)為重要極限公式.

由于,可知應(yīng)選C.

7.C

8.B

9.B解析:

10.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

11.D

12.C

13.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

14.B

15.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.

16.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.

17.A

18.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.

19.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。

方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。

20.A解析:

21.-(1/3)e-3x+C

22.本題考查的知識(shí)點(diǎn)為交換二重積分次序.

積分區(qū)域D:0≤x≤1,x2≤y≤x

積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此

23.

24.-sinxdx

25.

解析:

26.y=1/2y=1/2解析:

27.

28.x

29.本題考查的知識(shí)點(diǎn)為直線的方程和平面與直線的關(guān)系.

由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知

為所求.

30.cosxcosx解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.

31.1/21/2解析:32.0.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.33.-1

34.35.-sinx本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于cosx為f(x)的原函數(shù),可知

f(x)=(cosx)'=-sinx.

36.

解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

37.當(dāng)x→0時(shí),-1與x2等價(jià),應(yīng)滿足所以當(dāng)a=2時(shí)是等價(jià)的。

38.

39.

40.本題考查的知識(shí)點(diǎn)為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).由直線的點(diǎn)向式方程可知所求直線方程為

41.

42.函數(shù)的定義域?yàn)?/p>

注意

43.44.由二重積分物理意義知

45.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

46.由一階線性微分方程通解公式有

47.

48.

49.

50.由等價(jià)無窮小量的定義可知

51.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

52.

53.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

54.

55.

56.

57.

58.

列表:

說明

59.

60.

61.

62.

63.

64.

65.

66.67.解法1將所給方程兩端關(guān)于x求導(dǎo),可得2x+6y2·y'+2(y+xy')+3y'-1=0,整理可得

解法2令F(x,y)=x2+2y3+2xy+3y-x-1,則本題考查的知識(shí)點(diǎn)為隱函數(shù)求導(dǎo)法.

y=y(x)由方程F(x,Y)=0確定,求y'通常有兩種方法:

一是將F(x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論