




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第頁共頁復合函數導數公式及運算法那么復合函數導數公式.常用導數公式1.y=c(c為常數)y'=02.y=xny'=nx(n-1)3.y=axy'=axlnay=exy'=ex4.y=logaxy'=logae/xy=lnxy'=1/x5.y=sinxy'=cosx6.y=cosxy'=-sinx7.y=tanxy'=1/cos2x8.y=cotxy'=-1/sin2x9.y=arcsinxy'=1/√1-x210.y=arccosxy'=-1/√1-x211.y=arctanxy'=1/1+x212.y=arccotxy'=-1/1+x2在推導的過程中有這幾個常見的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整個變量,而g'(x)中把x看作變量』2.y=u/v,y'=u'v-uv'/v23.y=f(x)的反函數是x=g(y),那么有y'=1/x'證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。2.這個的推導暫且不證,因為假如根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到y(tǒng)=exy'=ex和y=lnxy'=1/x這兩個結果后能用復合函數的求導給予證明。3.y=ax,⊿y=a(x+⊿x)-ax=ax(a⊿x-1)⊿y/⊿x=ax(a⊿x-1)/⊿x假如直接令⊿x→0,是不能導出導函數的,必須設一個輔助的函數β=a⊿x-1通過換元進展計算。由設的輔助函數可以知道:⊿x=loga(1+β)。所以(a⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)1/β顯然,當⊿x→0時,β也是趨向于0的。而limβ→0(1+β)1/β=e,所以limβ→01/loga(1+β)1/β=1/logae=lna。把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0ax(a⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=axlna??梢灾溃攁=e時有y=exy'=ex。4.y=logax⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)x]/x⊿y/⊿x=loga[(1+⊿x/x)(x/⊿x)]/x因為當⊿x→0時,⊿x/x趨向于0而x/⊿x趨向于∞,所以lim⊿x→0loga(1+⊿x/x)(x/⊿x)=logae,所以有l(wèi)im⊿x→0⊿y/⊿x=logae/x。可以知道,當a=e時有y=lnxy'=1/x。這時可以進展y=xny'=nx(n-1)的推導了。因為y=xn,所以y=eln(xn)=enlnx,所以y'=enlnx?(nlnx)'=xn?n/x=nx(n-1)。5.y=sinx⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)?lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx6.類似地,可以導出y=cosxy'=-sinx。7.y=tanx=sinx/cosxy'=[(sinx)'cosx-sinx(cos)']/cos2x=(cos2x+sin2x)/cos2x=1/cos2x8.y=cotx=cosx/sinxy'=[(cosx)'sinx-cosx(sinx)']/sin2x=-1/sin2x9.y=arcsinxx=sinyx'=cosyy'=1/x'=1/cosy=1/√1-sin2y=1/√1-x210.y=arccosxx=cosyx'=-sinyy'=1/x'=-1/siny=-1/√1-cos2y=-1/√1-x211.y=arctanxx=tanyx'=1/cos2yy'=1/x'=cos2y=1/sec2y=1/1+tan2x=1/1+x212.y=arccotxx=cotyx'=-1/sin2yy'=1/x'=-sin2y=-1/csc2y=-1/1+cot2y=-1/1+x2另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與4.y=u土v,y'=u'土v'5.y=uv,y=u'v+uv'均能較快捷地求得結果。復合函數導數運算法那么復合函數求導法那么y=f(u(x))對x求導y'=u(x)'*f(u(x))',f(u(x))‘要把括號里的u(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第八章第三節(jié)摩擦力第一課時教學設計 -2023-2024學年人教版物理八年級下冊
- 2024年12月云浮市郁南縣產業(yè)園區(qū)工會聯(lián)合會公開招聘社會化工會工作者1人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 第二單元第8課二、《應用通道合成圖像》教學設計 2023-2024學年人教版初中信息技術七年級下冊
- 第五單元 課題1質量守恒定律教學設計-2024-2025學年九年級化學人教版(2024)上冊
- 古詩詞誦讀《李憑箜篌引》教學設計 2024-2025學年統(tǒng)編版高中語文選擇性必修中冊
- 繼電保護員-初級工試題含答案
- 實驗診斷學練習題+參考答案
- 2025年湖北體育職業(yè)學院單招職業(yè)傾向性測試題庫帶答案
- 第20課 第一次工業(yè)革命(教學設計)-2024-2025學年九年級歷史上冊素養(yǎng)提升教學設計(統(tǒng)編版)
- 2024國家電投湖北公司招聘5人筆試參考題庫附帶答案詳解
- 中國傳媒大學全媒體新聞編輯:案例教學-課件-全媒體新聞編輯:案例教學-第7講
- 生理學泌尿系統(tǒng)6學時課件
- PySide學習教程
- 數據結構英文教學課件:chapter1 Introduction
- 人教三年級數學下冊表格式全冊
- 事業(yè)單位綜合基礎知識考試題庫 綜合基礎知識考試題庫.doc
- 優(yōu)秀教研組評比制度及實施細則
- 物業(yè)交付后工程維修工作機制
- 農作物病蟲害專業(yè)化統(tǒng)防統(tǒng)治管理辦法
- JJF 1752-2019全自動封閉型發(fā)光免疫分析儀校準規(guī)范(高清版)
- GB 1886.300-2018 食品安全國家標準 食品添加劑 離子交換樹脂(高清版)
評論
0/150
提交評論