




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter3
MultipleRegression
Analysis:EstimationWooldridge:IntroductoryEconometrics:AModernApproach,5eMultipleRegression
Analysis:EstimationDefinitionofthemultiplelinearregressionmodelDependentvariable,explainedvariable,responsevariable,…Independentvariables,explanatoryvariables,regressors,…Errorterm,disturbance,unobservables,…InterceptSlopeparameters?Explainsvariableintermsofvariables“MotivationformultipleregressionIncorporatemoreexplanatoryfactorsintothemodelExplicitlyholdfixedotherfactorsthatotherwisewouldbeinAllowformoreflexiblefunctionalformsExample:WageequationHourlywageYearsofeducationLabormarketexperienceAllotherfactors…NowmeasureseffectofeducationexplicitlyholdingexperiencefixedMultipleRegression
Analysis:EstimationExample:AveragetestscoresandperstudentspendingPerstudentspendingislikelytobecorrelatedwithaveragefamilyincomeatagivenhighschoolbecauseofschoolfinancingOmittingaveragefamilyincomeinregressionwouldleadtobiasedestimateoftheeffectofspendingonaveragetestscoresInasimpleregressionmodel,effectofperstudentspendingwouldpartlyincludetheeffectoffamilyincomeontestscoresAveragestandardizedtestscoreofschoolOtherfactorsPerstudentspendingatthisschoolAveragefamilyincomeofstudentsatthisschoolMultipleRegression
Analysis:EstimationExample:FamilyincomeandfamilyconsumptionModelhastwoexplanatoryvariables:inomeandincomesquaredConsumptionisexplainedasaquadraticfunctionofincomeOnehastobeverycarefulwheninterpretingthecoefficients:FamilyconsumptionOtherfactorsFamilyincomeFamilyincomesquaredByhowmuchdoesconsumptionincreaseifincomeisincreasedbyoneunit?DependsonhowmuchincomeisalreadythereMultipleRegression
Analysis:EstimationExample:CEOsalary,salesandCEOtenureModelassumesaconstantelasticityrelationshipbetweenCEOsalaryandthesalesofhisorherfirmModelassumesaquadraticrelationshipbetweenCEOsalaryandhisorhertenurewiththefirmMeaningof?linear“regressionThemodelhastobelinearintheparameters(notinthevariables)LogofCEOsalaryLogsalesQuadraticfunctionofCEOtenurewithfirmMultipleRegression
Analysis:EstimationOLSEstimationofthemultipleregressionmodelRandomsampleRegressionresidualsMinimizesumofsquaredresidualsMinimizationwillbecarriedoutbycomputerMultipleRegression
Analysis:EstimationInterpretationofthemultipleregressionmodelThemultiplelinearregressionmodelmanagestoholdthevaluesofotherexplanatoryvariablesfixedevenif,inreality,theyarecorrelatedwiththeexplanatoryvariableunderconsideration?Ceterisparibus“-interpretationIthasstilltobeassumedthatunobservedfactorsdonotchangeiftheexplanatoryvariablesarechangedByhowmuchdoesthedependentvariablechangeifthej-thindependentvariableisincreasedbyoneunit,holdingallotherindependentvariablesandtheerrortermconstantMultipleRegression
Analysis:EstimationExample:DeterminantsofcollegeGPAInterpretationHoldingACTfixed,anotherpointonhighschoolgradepointaverageisassociatedwithanother.453pointscollegegradepointaverageOr:IfwecomparetwostudentswiththesameACT,butthehsGPAofstudentAisonepointhigher,wepredictstudentAtohaveacolGPAthatis.453higherthanthatofstudentBHoldinghighschoolgradepointaveragefixed,another10pointsonACTareassociatedwithlessthanonepointoncollegeGPAGradepointaverageatcollegeHighschoolgradepointaverageAchievementtestscoreMultipleRegression
Analysis:Estimation?Partiallingout“interpretationofmultipleregressionOnecanshowthattheestimatedcoefficientofanexplanatoryvariableinamultipleregressioncanbeobtainedintwosteps:1)Regresstheexplanatoryvariableonallotherexplanatoryvariables2)RegressontheresidualsfromthisregressionWhydoesthisprocedurework?TheresidualsfromthefirstregressionisthepartoftheexplanatoryvariablethatisuncorrelatedwiththeotherexplanatoryvariablesTheslopecoefficientofthesecondregressionthereforerepresentstheisolatedeffectoftheexplanatoryvariableonthedep.variableMultipleRegression
Analysis:EstimationPropertiesofOLSonanysampleofdataFittedvaluesandresidualsAlgebraicpropertiesofOLSregressionFittedorpredictedvaluesResidualsDeviationsfromregressionlinesumuptozeroCorrelationsbetweendeviationsandregressorsarezeroSampleaveragesofyandoftheregressorslieonregressionlineMultipleRegression
Analysis:EstimationGoodness-of-FitDecompositionoftotalvariationR-squaredAlternativeexpressionforR-squaredNoticethatR-squaredcanonlyincreaseifanotherexplanatoryvariableisaddedtotheregressionR-squaredisequaltothesquaredcorrelationcoefficientbetweentheactualandthepredictedvalueofthedependentvariableMultipleRegression
Analysis:EstimationExample:ExplainingarrestrecordsInterpretation:Proportionpriorarrests+0.5!-.075=-7.5arrestsper100menMonthsinprison+12!-.034(12)=-0.408arrestsforgivenmanQuartersemployed+1!-.104=-10.4arrestsper100menNumberoftimesarrested1986ProportionpriorarreststhatledtoconvictionMonthsinprison1986Quartersemployed1986MultipleRegression
Analysis:EstimationExample:Explainingarrestrecords(cont.)Anadditionalexplanatoryvariableisadded:Interpretation:Averagepriorsentenceincreasesnumberofarrests(?)LimitedadditionalexplanatorypowerasR-squaredincreasesbylittleGeneralremarkonR-squaredEvenifR-squaredissmall(asinthegivenexample),regressionmaystillprovidegoodestimatesofceterisparibuseffectsAveragesentenceinpriorconvictionsR-squaredincreasesonlyslightlyMultipleRegression
Analysis:EstimationStandardassumptionsforthemultipleregressionmodelAssumptionMLR.1(Linearinparameters)AssumptionMLR.2(Randomsampling)Inthepopulation,therelation-shipbetweenyandtheexpla-natoryvariablesislinearThedataisarandomsampledrawnfromthepopulationEachdatapointthereforefollowsthepopulationequationMultipleRegression
Analysis:EstimationStandardassumptionsforthemultipleregressionmodel(cont.)AssumptionMLR.3(Noperfectcollinearity)RemarksonMLR.3Theassumptiononlyrulesoutperfectcollinearity/correlationbet-weenexplanatoryvariables;imperfectcorrelationisallowedIfanexplanatoryvariableisaperfectlinearcombinationofotherexplanatoryvariablesitissuperfluousandmaybeeliminatedConstantvariablesarealsoruledout(collinearwithintercept)?Inthesample(andthereforeinthepopulation),noneoftheindependentvariablesisconstantandtherearenoexactrelationshipsamongtheindependentvariables“MultipleRegression
Analysis:EstimationExampleforperfectcollinearity:smallsampleExampleforperfectcollinearity:relationshipsbetweenregressorsInasmallsample,avgincmayaccidentallybeanexactmultipleofexpend;itwillnotbepossibletodisentangletheirseparateeffectsbecausethereisexactcovariationEithershareAorshareBwillhavetobedroppedfromtheregressionbecausethereisanexactlinearrelationshipbetweenthem:shareA+shareB=1MultipleRegression
Analysis:EstimationStandardassumptionsforthemultipleregressionmodel(cont.)AssumptionMLR.4(Zeroconditionalmean)Inamultipleregressionmodel,thezeroconditionalmeanassumptionismuchmorelikelytoholdbecausefewerthingsendupintheerrorExample:AveragetestscoresThevalueoftheexplanatoryvariablesmustcontainnoinformationaboutthemeanoftheunobservedfactorsIfavgincwasnotincludedintheregression,itwouldendupintheerrorterm;itwouldthenbehardtodefendthatexpendisuncorrelatedwiththeerrorMultipleRegression
Analysis:EstimationDiscussionofthezeromeanconditionalassumptionExplanatoryvariablesthatarecorrelatedwiththeerrortermarecalledendogenous;endogeneityisaviolationofassumptionMLR.4Explanatoryvariablesthatareuncorrelatedwiththeerrortermarecalledexogenous;MLR.4holdsifallexplanat.var.areexogenousExogeneityisthekeyassumptionforacausalinterpretationoftheregression,andforunbiasednessoftheOLSestimatorsTheorem3.1(UnbiasednessofOLS)Unbiasednessisanaveragepropertyinrepeatedsamples;inagivensample,theestimatesmaystillbefarawayfromthetruevaluesMultipleRegression
Analysis:EstimationIncludingirrelevantvariablesinaregressionmodelOmittingrelevantvariables:thesimplecase=0inthepopulationNoproblembecause.However,includingirrevelantvariablesmayincreasesamplingvariance.Truemodel(containsx1andx2)Estimatedmodel(x2isomitted)MultipleRegression
Analysis:EstimationOmittedvariablebiasConclusion:AllestimatedcoefficientswillbebiasedIfx1andx2arecorrelated,assumealinearregressionrelationshipbetweenthemIfyisonlyregressedonx1thiswillbetheestimatedinterceptIfyisonlyregressedonx1,thiswillbetheestimatedslopeonx1errortermMultipleRegression
Analysis:EstimationExample:OmittingabilityinawageequationWhenistherenoomittedvariablebias?IftheomittedvariableisirrelevantoruncorrelatedWillbothbepositiveThereturntoeducationwillbeoverestimatedbecause.Itwilllookasifpeoplewithmanyyearsofeducationearnveryhighwages,butthisispartlyduetothefactthatpeoplewithmoreeducationarealsomoreableonaverage.MultipleRegression
Analysis:EstimationOmittedvariablebias:moregeneralcasesNogeneralstatementspossibleaboutdirectionofbiasAnalysisasinsimplecaseifoneregressoruncorrelatedwithothersExample:OmittingabilityinawageequationTruemodel(containsx1,x2andx3)Estimatedmodel(x3isomitted)Ifexperisapproximatelyuncorrelatedwitheducandabil,thenthedirectionoftheomittedvariablebiascanbeasanalyzedinthesimpletwovariablecase.MultipleRegression
Analysis:EstimationStandardassumptionsforthemultipleregressionmodel(cont.)AssumptionMLR.5(Homoscedasticity)Example:WageequationShorthandnotationThevalueoftheexplanatoryvariablesmustcontainnoinformationaboutthevarianceoftheunobservedfactorsThisassumptionmayalsobehardtojustifyinmanycaseswithAllexplanatoryvariablesarecollectedinarandomvectorMultipleRegression
Analysis:EstimationTheorem3.2(SamplingvariancesofOLSslopeestimators)UnderassumptionsMLR.1–MLR.5:VarianceoftheerrortermTotalsamplevariationinexplanatoryvariablexj:R-squaredfromaregressionofexplanatoryvariablexjonallotherindependentvariables(includingaconstant)MultipleRegression
Analysis:EstimationComponentsofOLSVariances:1)TheerrorvarianceAhigherrorvarianceincreasesthesamplingvariancebecausethereismore?noise“intheequationAlargeerrorvariancenecessarilymakesestimatesimpreciseTheerrorvariancedoesnotdecreasewithsamplesize2)ThetotalsamplevariationintheexplanatoryvariableMoresamplevariationleadstomorepreciseestimatesTotalsamplevariationautomaticallyincreaseswiththesamplesizeIncreasingthesamplesizeisthusawaytogetmorepreciseestimatesMultipleRegression
Analysis:Estimation3)LinearrelationshipsamongtheindependentvariablesSamplingvarianceofwillbethehigherthebetterexplanatoryvariablecanbelinearlyexplainedbyotherindependentvariablesTheproblemofalmostlinearlydependentexplanatoryvariablesiscalledmulticollinearity(i.e.forsome)Regressonallotherindependentvariables(includingaconstant)TheR-squaredofthisregressionwillbethehigherthebetterxjcanbelinearlyexplainedbytheotherindependentvariablesMultipleRegression
Analysis:EstimationAnexampleformulticollinearityAveragestandardizedtestscoreofschoolExpendituresforteachersExpendituresforin-structionalmaterialsOtherex-pendituresThedifferentexpenditurecategorieswillbestronglycorrelatedbecauseifaschoolhasalotofresourcesitwillspendalotoneverything.Itwillbehardtoestimatethedifferentialeffectsofdifferentexpenditurecategoriesbecauseallexpendituresareeitherhighorlow.Forpreciseestimatesofthedifferentialeffects,onewouldneedinformationaboutsituationswhereexpenditurecategorieschangedifferentially.Asaconsequence,samplingvarianceoftheestimatedeffectswillbelarge.MultipleRegression
Analysis:EstimationDiscussionofthemulticollinearityproblemIntheaboveexample,itwouldprobablybebettertolumpallexpen-diturecategoriestogetherbecauseeffectscannotbedisentangledInothercases,droppingsomeindependentvariablesmayreducemulticollinearity(butthismayleadtoomittedvariablebias)Onlythesamplingvarianceofthevariablesinvolvedinmulticollinearitywillbeinflated;theestimatesofothereffectsmaybeverypreciseNotethatmulticollinearityisnotaviolationofMLR.3inthestrictsenseMulticollinearitymaybedetectedthrough?varianceinflationfactors“Asan(arbitrary)ruleofthumb,thevarianceinflationfactorshouldnotbelargerthan10MultipleRegression
Analysis:EstimationVariancesinmisspecifiedmodelsThechoiceofwhethertoincludeaparticularvariableinaregressioncanbemadebyanalyzingthetradeoffbetweenbiasandvarianceItmightbethecasethatthelikelyomittedvariablebiasinthemisspecifiedmodel2isovercompensatedbyasmallervarianceTruepopulationmodelEstimatedmodel1Estimatedmodel2MultipleRegression
Analysis:EstimationVariancesinmisspecifiedmodels(cont.)Case1:Case2:Conditionalonx1andx2,thevarianceinmodel2isalwayssmallerthanthatinmodel1Conclusion:DonotincludeirrelevantregressorsTradeoffbiasandvariance;Caution:biaswillnotvanisheveninlargesamplesMultipleRegression
Analysis:EstimationEstimatingtheerrorvarianceTheorem3.3(Unbiasedestimatoroftheerrorvariance)Anunbiasedestimateoftheerrorvariancecanbeobtainedbysubstractingthenumberofestimatedregressioncoefficientsfromthenumberofobservations.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024福建輕紡集團秋季招聘筆試參考題庫附帶答案詳解
- 10課我們愛和平 第二課時 教學設計-2023-2024學年道德與法治六年級下冊統編版
- 2024福建廣電網絡集團福州分公司招聘4人筆試參考題庫附帶答案詳解
- 機構報告范文
- 2024年湖北省名校聯盟中考語文模擬試卷
- 2024湖北遠安晟源供水有限責任公司招聘筆試參考題庫附帶答案詳解
- 2025年除草劑混劑項目立項申請報告模范
- 環(huán)保設施更換報告范文
- 公司開展安全標準化作業(yè)總結
- 第二單元活動二《設計智能家居》教學設計 2023-2024學年 上??平贪娉踔行畔⒓夹g八年級第二學期
- 脫碳塔CO2脫氣塔設計計算
- 《駱駝祥子》通讀指導手冊
- 股東會會議系列文件(通知、議程、簽到表、表決票、決議)
- 非法占用農田建房舉報信范文
- 伐樹工程施工合同范本
- 數據挖掘(第2版)PPT全套完整教學課件
- 工程開工報告(5篇)
- 配電箱試驗項目
- 運動技能學習與控制課件第一章運動技能學習與控制概述
- 溫室大棚花卉苗圃采暖方案空氣源熱泵
- BEC商務英語高級考試歷年真題
評論
0/150
提交評論