廣西2023年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第1頁
廣西2023年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第2頁
廣西2023年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第3頁
廣西2023年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第4頁
廣西2023年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則下列不等式恒成立的是A. B.C. D.2.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.43.已知定義域的奇函數(shù)的圖像關(guān)于直線對稱,且當(dāng)時,,則()A. B. C. D.4.已知x,y滿足約束條件,則的最大值是()A.-1 B.-2 C.-5 D.15.?dāng)?shù)列的通項,其前項之和為,則在平面直角坐標(biāo)系中,直線在軸上的截距為()A.-10 B.-9 C.10 D.96.圓x-12+y-3A.1 B.2 C.2 D.37.已知等差數(shù)列前n項的和為,,,則()A.25 B.26 C.27 D.288.若向量,,則()A. B. C. D.9.已知內(nèi)角的對邊分別為,滿足且,則△ABC()A.一定是等腰非等邊三角形 B.一定是等邊三角形C.一定是直角三角形 D.可能是銳角三角形,也可能是鈍角三角形10.已知點,點是圓上任意一點,則面積的最大值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則函數(shù)的最小值是_________.12.分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦.B.曼德爾布羅特在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是________13.將角度化為弧度:________.14.若,則______.15.函數(shù)的零點的個數(shù)是______.16.若三棱錐的底面是以為斜邊的等腰直角三角形,,,則該三棱錐的外接球的表面積為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在區(qū)間上的值域.18.已知函數(shù)的圖象與軸正半軸的交點為,.(1)求數(shù)列的通項公式;(2)令(為正整數(shù)),問是否存在非零整數(shù),使得對任意正整數(shù),都有?若存在,求出的值,若不存在,請說明理由.19.本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.已知數(shù)列滿足.(1)若,求的取值范圍;(2)若是公比為等比數(shù)列,,求的取值范圍;(3)若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時相應(yīng)數(shù)列的公差.20.如圖,正方體的棱長為2,E,F(xiàn)分別為,AC的中點.(1)證明:平面;(2)求三棱錐的體積.21.對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖:分組頻數(shù)頻率2440.120.05合計1(1)求出表中,及圖中的值;(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用不等式的性質(zhì),合理推理,即可求解,得到答案.【詳解】因為,所以,所以A項不正確;因為,所以,,則,所以B不正確;因為,則,所以,又因為,則,所以等號不成立,所以C正確;由,所以,所以D錯誤.【點睛】本題主要考查了不等式的性質(zhì)的應(yīng)用,其中解答中熟記不等式的性質(zhì),合理運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、A【解析】

等比數(shù)列的公比設(shè)為,分別令,結(jié)合等比數(shù)列的定義和通項公式,解方程可得所求首項.【詳解】等比數(shù)列的公比設(shè)為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【點睛】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)函數(shù)的圖像關(guān)于直線對稱可得,再結(jié)合奇函數(shù)的性質(zhì)即可得出答案.【詳解】解:∵函數(shù)的圖像關(guān)于直線對稱,∴,∴,∵奇函數(shù)滿足,當(dāng)時,,∴,故選:D.【點睛】本題主要考查函數(shù)的奇偶性與對稱性的綜合應(yīng)用,屬于基礎(chǔ)題.4、A【解析】根據(jù)題意作出約束條件確定的可行域,如下圖:令,可知在圖中處,取到最大值-1,故選A.考點:本題主要考查了簡單的線性規(guī)劃.5、B【解析】試題分析:因為數(shù)列的通項公式為,所以其前項和為,令,所以直線方程為,令,解得,即直線在軸上的截距為,故選B.考點:數(shù)列求和及直線方程.6、C【解析】

先計算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長.【詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長l=2r故答案選C【點睛】本題考查了圓的弦長公式,意在考查學(xué)生的計算能力.7、C【解析】

根據(jù)等差數(shù)列的求和與通項性質(zhì)求解即可.【詳解】等差數(shù)列前n項的和為,故.故.故選:C【點睛】本題主要考查了等差數(shù)列通項與求和的性質(zhì)運用,屬于基礎(chǔ)題.8、B【解析】

根據(jù)向量的坐標(biāo)運算,先由,求得,再求的坐標(biāo).【詳解】因為,所以,所以.故選:B【點睛】本題主要考查了向量的坐標(biāo)運算,還考查了運算求解的能力,屬于基礎(chǔ)題.9、B【解析】

根據(jù)正弦定理可得和,然后對進(jìn)行分類討論,結(jié)合三角形的性質(zhì),即可得到結(jié)果.【詳解】在中,因為,所以,又,所以,又當(dāng)時,因為,所以時等邊三角形;當(dāng)時,因為,所以不存在,綜上:一定是等邊三角形.故選:B.【點睛】本題主要考查了正弦定理的應(yīng)用,解題過程中注意兩解得情況,一般需要檢驗,本題屬于基礎(chǔ)題.10、B【解析】

求出直線的方程,計算出圓心到直線的距離,可知的最大高度為,并計算出,最后利用三角形的面積公式可得出結(jié)果.【詳解】直線的方程,且,圓的圓心坐標(biāo)為,半徑長為,圓心到直線的距離為,所以,點到直線的距離的最大值為,因此,面積的最大值為,故選B.【點睛】本題考查三角形面積的最值問題,考查圓的幾何性質(zhì),當(dāng)直線與圓相離時,若圓的半徑為,圓心到直線的距離為,則圓上一點到直線距離的最大值為,距離的最小值為,要熟悉相關(guān)結(jié)論的應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用基本不等式可求得函數(shù)的最小值.【詳解】,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立,因此,當(dāng)時,函數(shù)的最小值是.故答案為:.【點睛】本題考查利用基本不等式求函數(shù)的最值,考查計算能力,屬于基礎(chǔ)題.12、【解析】

觀察圖像可知每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.再利用規(guī)律找到行與行之間的遞推關(guān)系即可.【詳解】由圖像可得每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.故從第三行開始,每行的實心圓點數(shù)均為前兩行之和.即.故第1到第13行中實心圓點的個數(shù)分別為:.故答案為:【點睛】本題主要考查了遞推數(shù)列的實際運用,需要觀察求得行與行之間的實心圓點的遞推關(guān)系,屬于中等題型.13、【解析】

根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點睛】本題考查角度和弧度的互化公式,屬于基礎(chǔ)題.14、【解析】

,則,故答案為.15、【解析】

在同一直角坐標(biāo)系內(nèi)畫出函數(shù)與函數(shù)的圖象,利用數(shù)形結(jié)合思想可得出結(jié)論.【詳解】在同一直角坐標(biāo)系內(nèi)畫出函數(shù)與函數(shù)的圖象如下圖所示:由圖象可知,函數(shù)與函數(shù)的圖象的交點個數(shù)為,因此,函數(shù)的零點個數(shù)為.故答案為:.【點睛】本題考查函數(shù)零點個數(shù)的判斷,在判斷函數(shù)的零點個數(shù)時,一般轉(zhuǎn)化為對應(yīng)方程的根,或轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.16、【解析】

由已知計算后知也是以為斜邊的直角三角形,這樣的中點到棱錐四個頂點的距離相等,即為外接球的球心,從而很容易得球的半徑,計算出表面積.【詳解】因為,所以是等腰直角三角形,且為斜邊,為的中點,因為底面是以為斜邊的等腰直角三角形,所以,點即為球心,則該三棱錐的外接圓半徑,故該三棱錐的外接球的表面積為.【點睛】本題考查球的表面積,考查三棱錐與外接球,解題關(guān)鍵是找到外接球的球心,證明也是以為斜邊的直角三角形,利用直角三角形的性質(zhì)是本題的關(guān)鍵.也是尋找外接球球心的一種方法.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用兩角差的余弦和誘導(dǎo)公式化簡f(x),再求單調(diào)區(qū)間即可;(2)由結(jié)合三角函數(shù)性質(zhì)求值域即可【詳解】(1)令,得,的單調(diào)遞增區(qū)間為;(2)由得,故而.【點睛】本題考查三角恒等變換,三角函數(shù)單調(diào)性及值域問題,熟記公式準(zhǔn)確計算是關(guān)鍵,是基礎(chǔ)題18、(1);(2)存在,.【解析】

(1)把點A帶入即可(2)根據(jù)(1)的計算出、,再解不等式即可【詳解】(1)設(shè),得,.所以;(2),若存在,滿足恒成立即:,恒成立當(dāng)為奇數(shù)時,當(dāng)為偶數(shù)時,所以,故:.【點睛】本題考查了數(shù)列通項的求法,以及不等式恒成立的問題,不等式恒成立是一個難點,也是高考中的??键c,本題屬于較難的題。19、(1);(2);(3)的最大值為1999,此時公差為.【解析】

(1)依題意:,又將已知代入求出x的范圍;(2)先求出通項:,由求出,對q分類討論求出Sn分別代入不等式Sn≤Sn+1≤3Sn,得到關(guān)于q的不等式組,解不等式組求出q的范圍.(3)依題意得到關(guān)于k的不等式,得出k的最大值,并得出k取最大值時a1,a2,…ak的公差.【詳解】(1)依題意:,∴;又∴3≤x≤27,綜上可得:3≤x≤6(2)由已知得,,,∴,當(dāng)q=1時,Sn=n,Sn≤Sn+1≤3Sn,即,成立.當(dāng)1<q≤3時,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而對于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又當(dāng)1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,當(dāng)時,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴時,不等式恒成立,∴q的取值范圍為:.(3)設(shè)a1,a2,…ak的公差為d.由,且a1=1,得即當(dāng)n=1時,d≤2;當(dāng)n=2,3,…,k﹣1時,由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值為1999,k=1999時,a1,a2,…ak的公差為.【點睛】本題考查等比數(shù)列的通項公式及前n項和的求法;考查不等式組的解法;找好分類討論的起點是解決本題的關(guān)鍵,屬于一道難題.20、(1)證明見解析;(2)【解析】

(1)可利用線線平行來證明線面平行(2)可采用等體積法進(jìn)行求解【詳解】證明:(1)如圖,連結(jié)BD;因為四邊形ABCD為正方形,所以BD交AC于F且F為BD中點;又因為E為中點,所以;因為平面,平面,所以平面;(2)三棱錐的體積.【點睛】本題考查了線面平行的證明及錐體體積的求解方法,證線面平行一般是通過證線線平行來證明,三棱錐的體積常用等體積法轉(zhuǎn)換底面和高進(jìn)行求解.21、(1);;;(2)60人.(3)【解析】

(1)根據(jù)頻率,頻數(shù)和樣本容量之間的關(guān)系即頻率等于頻數(shù)除以樣本容量,寫出算式,求出式子中的字母的值;(2)該校高三學(xué)生有240人,分組內(nèi)的頻率是0.25,估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60人;(3)設(shè)在區(qū)間內(nèi)的人為,,,,在區(qū)間內(nèi)的人為,,寫出任選2人的所有基本事件,利用對立事件求得答案.【詳解】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論