浙江高考數(shù)列經(jīng)典例題匯總_第1頁(yè)
浙江高考數(shù)列經(jīng)典例題匯總_第2頁(yè)
浙江高考數(shù)列經(jīng)典例題匯總_第3頁(yè)
浙江高考數(shù)列經(jīng)典例題匯總_第4頁(yè)
浙江高考數(shù)列經(jīng)典例題匯總_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1n歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.101n時(shí)間2021.03.10

創(chuàng)作:歐陽(yáng)治1.【2014年.浙江卷理194分已知數(shù)列a和滿足an

an

2

nN

若a為等比數(shù)n列,且

a.13(Ⅰ)求a與;n(Ⅱ)設(shè)

cb。記數(shù)列c的前nn

項(xiàng)和為S.n(i求

n

;(ii求正整數(shù)

,使得對(duì)任意nN

n

.2.【2011年.浙江卷理194分已知公差不為0等差數(shù)列

{}n

的首項(xiàng)

aa1

(

R數(shù)列的前

n項(xiàng)和為S,且,,成等比數(shù)列n2(Ⅰ)求數(shù)列

{}n

的通項(xiàng)公式及

n歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

n22,歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10n22,(Ⅱ

An

111

B,

1a1

,當(dāng)n

時(shí),試比較與B的大.nn【2008年.浙江卷理分

an

,

,a

a

(n?)

aan12

n11))12求證:當(dāng)N?時(shí),

(1

.(Ⅰ)

a

;(Ⅱ)

n

;(Ⅲ)

Tn

。4.【2007年.浙江理分?jǐn)?shù)列

{}n中的相鄰兩項(xiàng)

2k

是關(guān)于

的方程的兩個(gè)根,且a

2k

k2(Ⅰ)求

a,1,5

;(Ⅱ)求數(shù)列

{}n

的前2n

項(xiàng)的和;2歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

na12歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10na12()記

f(n

nsinn

,(f(2)(f(aa14

(f(na2nn求證:

n

nN*)5.【2005年浙江理設(shè)點(diǎn)A(xnn

P(x,2

)和拋物線

C

n

=x2+anx+bn(n∈N*)中=-4n,

xn

由以下方法得到:x1=1點(diǎn)P2(x2,2)在物線C1:y=x2+a1x上,點(diǎn),0)到P2的距離是A1到點(diǎn)的最短距離,…,點(diǎn)(n

n

,

n

)

在拋物線

C

n

+anx+bn上A(,nn0)到P的距離是A到C上點(diǎn)的最短距離.nn(Ⅰ)求x2及方程.(Ⅱ)證明}是等差數(shù)列.n6.【2015高考浙江數(shù)列

滿足=2且an

=

-a(n

n

*)(1證明:1

2

n

*歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

a歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10a(2設(shè)數(shù)列

的前n

項(xiàng)和為,證明1Snnn(nN*)7.【2016高考浙江理數(shù)】設(shè)數(shù)列

n滿足

n

n

(I)證明:

a

a

,n)若

,n

證明:,

例1高考研究聯(lián)盟2017屆高三下學(xué)期期初聯(lián)考)已知數(shù),an+1=an2+2an,n∈N*,設(shè)bn=log2(an+1).(I)求{an}的項(xiàng)公式;)求證:1+<n(n≥2);若c=bn,求證:2≤

(

)

<3.例2州中學(xué)2017屆高三3月高考模擬)正項(xiàng)數(shù)

滿足

a

annn

,(Ⅰ)求

a的值;歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10(Ⅱ)證明:對(duì)任意的

,ann

;(Ⅲ)記數(shù)

項(xiàng)和為

,證明:對(duì)任意的

,

n

.例3州市十校聯(lián)合體2017屆高三上學(xué)期期末)已知數(shù)列

{

}

滿足

a1

a

n

18

n

2

,(1)若數(shù)列

{

}

是常數(shù)列,求m值;(2當(dāng)時(shí),求證:

an

n

;(3求最大的正數(shù),使得

n

對(duì)一切整數(shù)恒成立,并證明你的結(jié)論。例4州市2017屆高三下學(xué)期返校聯(lián)考)設(shè)數(shù)列

11

,且滿足:

ab,n

成等比數(shù)列,b,b,

成等差數(shù)列。(Ⅰ明數(shù)列

是等差數(shù)列通項(xiàng)公式

n

,

n

。歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

ij歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10ij(Ⅱ)設(shè)

n

1(n

n

,數(shù)列

的前

項(xiàng)和記為

,證明:

12

。例5州市2017屆高三上學(xué)期期末質(zhì)量評(píng)估)已知數(shù)

滿足

2

a

n(1)

求證

aann(2)

求證

(3)

若證

ak

,求證整數(shù)的最小值。例6.(浙江省杭州高級(jí)中學(xué)2017屆高三月高考模擬考試)數(shù)

定義為

,a1

,

a

n

n

12

a

2n

,nN

(1

a1

a1

(0)

122210

的值;(2當(dāng)a時(shí),定義數(shù)

b(k12)

,

,是否存在正整數(shù)

i,j(ij)

,使得

1b2

2

1a

。如果存在,求出一組

(ij)

,如果不存在,說(shuō)明理由。歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

,1歐陽(yáng)治創(chuàng)編2021.03.10,1歐陽(yáng)治創(chuàng)編2021.03.10例7年浙江名校高三下學(xué)期協(xié)作體)已知函數(shù)

f(x

,(Ⅰ)求方程

f()0

的實(shí)數(shù)解;(Ⅱ)如果數(shù)

n

滿足

a1

,a

n

fn

N

是否存在實(shí)數(shù)

,使得

2n

2

對(duì)所有的

N

都成立?證明你的結(jié)論.(Ⅲ)在(Ⅱ)的條件下,設(shè)數(shù)

n

的前n項(xiàng)的和為

n

,證明:

n

.例8年4湖州、衢州、麗水三地教學(xué)質(zhì)量檢測(cè))數(shù)

,

an1

a

n

2

a2nnN)n(1證明:

a

n

n

;(2設(shè)

{}前n

項(xiàng)的和為

n

,證明:

1n

.例94

月浙江金華十校聯(lián)考

aa(nN)n(1)求證:

n

;歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

1歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.101(2)求證:

n1

1n2a(1)a34n例10年4杭州高三年級(jí)教學(xué)質(zhì)量檢測(cè))已知數(shù)列數(shù)列

n

項(xiàng)均為非負(fù)數(shù)n項(xiàng)和為

n

,且對(duì)任意

nN

,都有

n

2()

a1

1

,

a

505

,求

6

的最大值()

對(duì)任意aan1

nNn(1)

,都有Sn1,求證1

設(shè)數(shù)

n

和證明:對(duì)任意

n

*

,(Ⅰ)當(dāng)(Ⅱ)當(dāng)

0≤≤,0≤≤11a,1

;;(Ⅲ)當(dāng)

a

12

時(shí),

.2已知數(shù)n

2

(nN

)(1)

求證:

nn

歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

a12n()是函數(shù)()BfAf2歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)a12n()是函數(shù)()BfAf2(2)

數(shù)列

112a

的前

n項(xiàng)和為S

n

,求:

1

23

n3已知各項(xiàng)均為正數(shù)的數(shù)

n

a

,n

項(xiàng)和為

n

,且

2n

2n

.(1)

求證:

Sn

a2nn4(2)求證:

S

SnSn224

122

xf()1

的圖象上的任意兩點(diǎn).(1當(dāng)

x

1,求f()f()

的值;(2設(shè)

f

1

,其中

N

*

,求

n

;(3

n

1

N

*

,設(shè)

T

為數(shù)項(xiàng)的和,求證:

n

.5給定正整數(shù)

和正數(shù)

M

對(duì)于滿足條件

a21

2n

M的所有等差數(shù)列

a,,Sa1

n

n

a

,2歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

n歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10n(1)求證:

25

M6已知數(shù)列

{}n

滿足

,

N*

,設(shè)

blog(a2n

.(Ⅰ)求

n

的前

項(xiàng)和S{}n

的通項(xiàng)公式;(Ⅱ)求證:

1(n3

2)

;若

b

n

,求證:

cnc

.7已知數(shù)列

{}足an1

n

18

a2n

,(1若數(shù)列

{}常數(shù)列,求m值;n(2當(dāng)時(shí),求證:

n

n

;(3求最大的正數(shù)

,使得

an

4對(duì)一切整數(shù)n恒成立,并證明你的結(jié)論.8知數(shù)列

{}前

項(xiàng)和為

an

N*

.(1求證

{}

為等比數(shù)列,并求出數(shù)列

{}

的通項(xiàng)公式;歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

2歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.102(2{}的前nS

項(xiàng)和為

T

在正整對(duì)任意

N*,-若存在n最小值,若不存在,請(qǐng)說(shuō)明理由9已知數(shù)

滿足:

a1

n

n

a2n

(Ⅰ)證明:

anan

1

;(Ⅱ)證明:

2

n

n

.10

滿足

n

n

an(n

2

n*

)證明:當(dāng)

n*

時(shí),(Ⅰ)

(n

;(Ⅱ)

an

.11已知數(shù)列

{}足,1

a

,

n

.(求,并求數(shù)列

{}

的通項(xiàng)公式;歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10

設(shè)2na歐陽(yáng)治創(chuàng)編2021.03.10歐陽(yáng)治創(chuàng)編2021.03.10設(shè)2na()

{}n

的前

項(xiàng)的和為S(1)3

.12數(shù)

a,

n

n

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論