全等三角形中做輔助線的技巧_第1頁
全等三角形中做輔助線的技巧_第2頁
全等三角形中做輔助線的技巧_第3頁
全等三角形中做輔助線的技巧_第4頁
全等三角形中做輔助線的技巧_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

./WORD格式整理全等三角形中做輔助線的技巧口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。由角平分線想到的輔助線口訣:圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點到角兩邊的距離相等。對于有角平分線的輔助線的作法,一般有兩種。①從角平分線上一點向兩邊作垂線;②利用角平分線,構(gòu)造對稱圖形〔如作法是在一側(cè)的長邊上截取短邊。通常情況下,出現(xiàn)了直角或是垂直等條件時,一般考慮作垂線;其它情況下考慮構(gòu)造對稱圖形。至于選取哪種方法,要結(jié)合題目圖形和已知條件。與角有關(guān)的輔助線〔一、截取構(gòu)全等如圖1-1,∠AOC=∠BOC,如取OE=OF,并連接DE、DF,則有△OED≌△OFD,從而為我們證明線段、角相等創(chuàng)造了條件。如圖1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,點E在AD上,求證:BC=AB+CD。已知:如圖1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求證DC⊥AC已知:如圖1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求證:AB-AC=CD分析:此題的條件中還有角的平分線,在證明中還要用到構(gòu)造全等三角形,此題還是證明線段的和差倍分問題。用到的是截取法來證明的,在長的線段上截取短的線段,來證明。試試看可否把短的延長來證明呢?練習已知在△ABC中,AD平分∠BAC,∠B=2∠C,求證:AB+BD=AC已知:在△ABC中,∠CAB=2∠B,AE平分∠CAB交BC于E,AB=2AC,求證:AE=2CE已知:在△ABC中,AB>AC,AD為∠BAC的平分線,M為AD上任一點。求證:BM-CM>AB-AC已知:D是△ABC的∠BAC的外角的平分線AD上的任一點,連接DB、DC。求證:BD+CD>AB+AC?!捕?、角分線上點向角兩邊作垂線構(gòu)全等過角平分線上一點向角兩邊作垂線,利用角平分線上的點到兩邊距離相等的性質(zhì)來證明問題。如圖2-1,已知AB>AD,∠BAC=∠FAC,CD=BC。求證:∠ADC+∠B=180分析:可由C向∠BAD的兩邊作垂線。近而證∠ADC與∠B之和為平角。如圖2-2,在△ABC中,∠A=90,AB=AC,∠ABD=∠CBD。求證:BC=AB+AD分析:過D作DE⊥BC于E,則AD=DE=CE,則構(gòu)造出全等三角形,從而得證。此題是證明線段的和差倍分問題,從中利用了相當于截取的方法。已知如圖2-3,△ABC的角平分線BM、CN相交于點P。求證:∠BAC的平分線也經(jīng)過點P。分析:連接AP,證AP平分∠BAC即可,也就是證P到AB、AC的距離相等。練習:1.如圖2-4∠AOP=∠BOP=15,PC//OA,PD⊥OA,如果PC=4,則PD=〔A4B3C2D12.已知在△ABC中,∠C=90,AD平分∠CAB,CD=1.5,DB=2.5.求AC。3.已知:如圖2-5,∠BAC=∠CAD,AB>AD,CE⊥AB,AE=〔AB+AD.求證:∠D+∠B=180。4.已知:如圖2-6,在正方形ABCD中,E為CD的中點,F為BC上的點,∠FAE=∠DAE。求證:AF=AD+CF。已知:如圖2-7,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足為D,AE平分∠CAB交CD于F,過F作FH//AB交BC于H。求證CF=BH?!踩鹤鹘瞧椒志€的垂線構(gòu)造等腰三角形從角的一邊上的一點作角平分線的垂線,使之與角的兩邊相交,則截得一個等腰三角形,垂足為底邊上的中點,該角平分線又成為底邊上的中線和高,以利用中位線的性質(zhì)與等腰三角形的三線合一的性質(zhì)?!踩绻}目中有垂直于角平分線的線段,則延長該線段與角的另一邊相交。已知:如圖3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中點。求證:DH=〔AB-AC分析:延長CD交AB于點E,則可得全等三角形。問題可證。已知:如圖3-2,AB=AC,∠BAC=90,AD為∠ABC的平分線,CE⊥BE.求證:BD=2CE。分析:給出了角平分線給出了邊上的一點作角平分線的垂線,可延長此垂線與另外一邊相交,近而構(gòu)造出等腰三角形。例3.已知:如圖3-3在△ABC中,AD、AE分別∠BAC的內(nèi)、外角平分線,過頂點B作BFAD,交AD的延長線于F,連結(jié)FC并延長交AE于M。求證:AM=ME。分析:由AD、AE是∠BAC內(nèi)外角平分線,可得EA⊥AF,從而有BF//AE,所以想到利用比例線段證相等。已知:如圖3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延長線于M。求證:AM=〔AB+AC分析:題設中給出了角平分線AD,自然想到以AD為軸作對稱變換,作△ABD關(guān)于AD的對稱△AED,然后只需證DM=EC,另外由求證的結(jié)果AM=〔AB+AC,即2AM=AB+AC,也可嘗試作△ACM關(guān)于CM的對稱△FCM,然后只需證DF=CF即可。練習:已知:在△ABC中,AB=5,AC=3,D是BC中點,AE是∠BAC的平分線,且CE⊥AE于E,連接DE,求DE。已知BE、BF分別是△ABC的∠ABC的內(nèi)角與外角的平分線,AF⊥BF于F,AE⊥BE于E,連接EF分別交AB、AC于M、N,求證MN=BC〔四、以角分線上一點做角的另一邊的平行線有角平分線時,常過角平分線上的一點作角的一邊的平行線,從而構(gòu)造等腰三角形。或通過一邊上的點作角平分線的平行線與另外一邊的反向延長線相交,從而也構(gòu)造等腰三角形。如圖4-1和圖4-2所示。12ACDB12ACDB例5如圖,BC>BA,BD平分∠ABC,且AD=CD,求證:∠A+∠C=180。BBDCAABECD例6如圖,AB∥CD,AE、DE分別平分ABECD練習:1.已知,如圖,∠C=2∠A,AC=2BC。求證:△ABC是直角三角形。CCAB2.已知:如圖,AB=2AC,∠1=∠2,DA=DB,求證:DC⊥ACAABDC123.已知CE、AD是△ABC的角平分線,∠B=60°,求證:AC=AE+CDAAEBDC4.已知:如圖在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分線,求證:BC=AB+ADAABCD二、由線段和差想到的輔助線口訣:線段和差及倍半,延長縮短可試驗。線段和差不等式,移到同一三角去。遇到求證一條線段等于另兩條線段之和時,一般方法是截長補短法:1、截長:在長線段中截取一段等于另兩條中的一條,然后證明剩下部分等于另一條;2、補短:將一條短線段延長,延長部分等于另一條短線段,然后證明新線段等于長線段。對于證明有關(guān)線段和差的不等式,通常會聯(lián)系到三角形中兩線段之和大于第三邊、之差小于第三邊,故可想辦法放在一個三角形中證明。在利用三角形三邊關(guān)系證明線段不等關(guān)系時,如直接證不出來,可連接兩點或廷長某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個或幾個三角形中,再運用三角形三邊的不等關(guān)系證明,如:已知如圖1-1:D、E為△ABC內(nèi)兩點,求證:AB+AC>BD+DE+CE.證明:〔法一將DE兩邊延長分別交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE;〔1在△BDM中,MB+MD>BD;〔2在△CEN中,CN+NE>CE;〔3由〔1+〔2+〔3得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC〔法二:圖1-2延長BD交AC于F,廷長CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF>BD+DG+GF〔三角形兩邊之和大于第三邊…〔1GF+FC>GE+CE〔同上〔2DG+GE>DE〔同上〔3由〔1+〔2+〔3得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。在利用三角形的外角大于任何和它不相鄰的內(nèi)角時如直接證不出來時,可連接兩點或延長某邊,構(gòu)造三角形,使求證的大角在某個三角形的外角的位置上,小角處于這個三角形的內(nèi)角位置上,再利用外角定理:例如:如圖2-1:已知D為△ABC內(nèi)的任一點,求證:∠BDC>∠BAC。分析:因為∠BDC與∠BAC不在同個三角形中,沒有直接的聯(lián)系,可適當添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;證法一:延長BD交AC于點E,這時∠BDC是△EDC的外角,∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC證法二:連接AD,并廷長交BC于F,這時∠BDF是△ABD的外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC。注意:利用三角形外角定理證明不等關(guān)系時,通常將大角放在某三角形的外角位置上,小角放在這個三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。有角平分線時,通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖3-1:已知AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF。分析:要證BE+CF>EF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個三角形中,而由已知∠1=∠2,∠3=∠4,可在角的兩邊截取相等的線段,利用三角形全等對應邊相等,把EN,FN,EF移到同個三角形中。證明:在DN上截取DN=DB,連接NE,NF,則DN=DC,在△DBE和△NDE中:DN=DB〔輔助線作法∠1=∠2〔已知ED=ED〔公共邊∴△DBE≌△NDE〔SAS∴BE=NE〔全等三角形對應邊相等同理可得:CF=NF在△EFN中EN+FN>EF〔三角形兩邊之和大于第三邊∴BE+CF>EF。注意:當證題有角平分線時,常可考慮在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的對應性質(zhì)得到相等元素。三、截長補短法作輔助線。例如:已知如圖6-1:在△ABC中,AB>AC,∠1=∠2,P為AD上任一點求證:AB-AC>PB-PC。分析:要證:AB-AC>PB-PC,想到利用三角形三邊關(guān)系,定理證之,因為欲證的線段之差,故用兩邊之差小于第三邊,從而想到構(gòu)造第三邊AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再連接PN,則PC=PN,又在△PNB中,PB-PN<BN,即:AB-AC>PB-PC。證明:〔截長法在AB上截取AN=AC連接PN,在△APN和△APC中AN=AC〔輔助線作法∠1=∠2〔已知AP=AP〔公共邊∴△APN≌△APC〔SAS,∴PC=PN〔全等三角形對應邊相等∵在△BPN中,有PB-PN<BN〔三角形兩邊之差小于第三邊∴BP-PC<AB-AC證明:〔補短法延長AC至M,使AM=AB,連接PM,在△ABP和△AMP中AB=AM〔輔助線作法∠1=∠2〔已知AP=AP〔公共邊∴△ABP≌△AMP〔SAS∴PB=PM〔全等三角形對應邊相等又∵在△PCM中有:CM>PM-PC<三角形兩邊之差小于第三邊>∴AB-AC>PB-PC。DAECB例1.如圖,AC平分∠BAD,CE⊥AB,且∠B+DAECB例2如圖,在四邊形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,求證:∠ADC+∠B=180o例3已知:如圖,等腰三角形ABC中,AB=AC,A=108°,BD平分ABC。DCDCBAMBDCA例4如圖,已知Rt△ABC中,∠ACB=90°,AD是∠CAB的平分線,DMMBDCA[夯實基礎]例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,證明二次全等方法2:輔助線同上,利用面積方法3:倍長中線AD[方法精講]常用輔助線添加方法——倍長中線△ABC中方式1:延長AD到E,AD是BC邊中線使DE=AD,連接BE方式2:間接倍長作CF⊥AD于F,延長MD到N,作BE⊥AD的延長線于E使DN=MD,連接BE連接CD[經(jīng)典例題]例1:△ABC中,AB=5,AC=3,求中線AD的取值范圍提示:畫出圖形,倍長中線AD,利用三角形兩邊之和大于第三邊例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延長線上,DE交BC于F,且DF=EF,求證:BD=CE方法1:過D作DG∥AE交BC于G,證明ΔDGF≌ΔCEF方法2:過E作EG∥AB交BC的延長線于G,證明ΔEFG≌ΔDFB方法3:過D作DG⊥BC于G,過E作EH⊥BC的延長線于H證明ΔBDG≌ΔECH例3:已知在△ABC中,AD是BC邊上的中線,E是AD上一點,且BE=AC,延長BE交AC于F,求證:AF=EF提示:倍長AD至G,連接BG,證明ΔBDG≌ΔCDA三角形BEG是等腰三角形例4:已知:如圖,在中,,D、E在BC上,且DE=EC,過D作交AE于點F,DF=AC.求證:AE平分提示:方法1:倍長AE至G,連結(jié)DG方法2:倍長FE至H,連結(jié)CH例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中線,求證:∠C=∠BAE提示:倍長AE至F,連結(jié)DF證明ΔABE≌ΔFDE〔SAS進而證明ΔADF≌ΔADC〔SAS[融會貫通]1、在四邊形ABCD中,AB∥DC,E為BC邊的中點,∠BAE=∠EAF,AF與DC的延長線相交于點F。試探究線段AB與AF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論提示:延長AE、DF交于G證明AB=GC、AF=GF所以AB=AF+FC2、如圖,AD為的中線,DE平分交AB于E,DF平分交AC于F.求證:提示:方法1:在DA上截取DG=BD,連結(jié)EG、FG證明ΔBDE≌ΔGDEΔDCF≌ΔDGF所以BE=EG、CF=FG利用三角形兩邊之和大于第三邊方法2:倍長ED至H,連結(jié)CH、FH證明FH=EF、CH=BE利用三角形兩邊之和大于第三邊3、已知:如圖,ABC中,C=90,CMAB于M,AT平分BAC交CM于D,交BC于T,過D作DE//AB交BC于E,求證:CT=BE.提示:過T作TN⊥AB于N證明ΔBTN≌ΔECD1.如圖,AB∥CD,AE、DE分別平分∠BAD各∠ADE,求證:AD=AB+CD。EEDCBA2.如圖,△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線,且B,C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E。求證:BD=DE+CE四、由中點想到的輔助線口訣:三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。在三角形中,如果已知一點是三角形某一邊上的中點,那么首先應該聯(lián)想到三角形的中線、中位線、加倍延長中線及其相關(guān)性質(zhì)〔直角三角形斜邊中線性質(zhì)、等腰三角形底邊中線性質(zhì),然后通過探索,找到解決問題的方法。〔一、中線把原三角形分成兩個面積相等的小三角形即如圖1,AD是ΔABC的中線,則SΔABD=SΔACD=SΔABC〔因為ΔABD與ΔACD是等底同高的。例1.如圖2,ΔABC中,AD是中線,延長AD到E,使DE=AD,DF是ΔDCE的中線。已知ΔABC的面積為2,求:ΔCDF的面積。解:因為AD是ΔABC的中線,所以SΔACD=SΔABC=×2=1,又因CD是ΔACE的中線,故SΔCDE=SΔACD=1,因DF是ΔCDE的中線,所以SΔCDF=SΔCDE=×1=。∴ΔCDF的面積為。〔二、由中點應想到利用三角形的中位線例2.如圖3,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點,BA、CD的延長線分別交EF的延長線G、H。求證:∠BGE=∠CHE。證明:連結(jié)BD,并取BD的中點為M,連結(jié)ME、MF,∵ME是ΔBCD的中位線,∴MECD,∴∠MEF=∠CHE,∵MF是ΔABD的中位線,∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,從而∠BGE=∠CHE?!踩?、由中線應想到延長中線例3.圖4,已知ΔABC中,AB=5,AC=3,連BC上的中線AD=2,求BC的長。解:延長AD到E,使DE=AD,則AE=2AD=2×2=4。在ΔACD和ΔEBD中,

∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,從而BE=AC=3。在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2。例4.如圖5,已知ΔABC中,AD是∠BAC的平分線,AD又是BC邊上的中線。求證:ΔABC是等腰三角形。證明:延長AD到E,使DE=AD。仿例3可證:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,從而AB=AC,即ΔABC是等腰三角形。〔四、直角三角形斜邊中線的性質(zhì)例5.如圖6,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求證:AC=BD。證明:取AB的中點E,連結(jié)DE、CE,則DE、CE分別為RtΔABD,RtΔABC斜邊AB上的中線,故DE=CE=AB,因此∠CDE=∠DCE?!逜B//DC,∴∠CDE=∠1,∠DCE=∠2,∴∠1=∠2,在ΔADE和ΔBCE中,∵DE=CE,∠1=∠2,AE=BE,∴ΔADE≌ΔBCE,∴AD=BC,從而梯形ABCD是等腰梯形,因此AC=BD。〔五、角平分線且垂直一線段,應想到等腰三角形的中線例6.如圖7,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點D,CE垂直于BD,交BD的延長線于點E。求證:BD=2CE。證明:延長BA,CE交于點F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,從而CF=2CE。又∠1+∠F=∠3+∠F=90°,故∠1=∠3。在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。注:此例中BE是等腰ΔBCF的底邊CF的中線?!擦芯€延長口訣:三角形中有中線,延長中線等中線。題目中如果出現(xiàn)了三角形的中線,常延長加倍此線段,再將端點連結(jié),便可得到全等三角形。例一:如圖4-1:AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF。證明:廷長ED至M,使DM=DE,連接CM,MF。在△BDE和△CDM中,BD=CD〔中點定義∠1=∠5〔對頂角相等ED=MD〔輔助線作法∴△BDE≌△CDM〔SAS又∵∠1=∠2,∠3=∠4〔已知∠1+∠2+∠3+∠4=180°〔平角的定義∴∠3+∠2=90°即:∠EDF=90°∴∠FDM=∠EDF=90°在△EDF和△MDF中ED=MD〔輔助線作法∠EDF=∠FDM〔已證DF=DF〔公共邊∴△EDF≌△MDF〔SAS∴EF=MF〔全等三角形對應邊相等∵在△CMF中,CF+CM>MF〔三角形兩邊之和大于第三邊∴BE+CF>EF上題也可加倍FD,證法同上。注意:當涉及到有以線段中點為端點的線段時,可通過延長加倍此線段,構(gòu)造全等三角形,使題中分散的條件集中。例二:如圖5-1:AD為△ABC的中線,求證:AB+AC>2AD。分析:要證AB+AC>2AD,由圖想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左邊比要證結(jié)論多BD+CD,故不能直接證出此題,而由2AD想到要構(gòu)造2AD,即加倍中線,把所要證的線段轉(zhuǎn)移到同一個三角形中去證明:延長AD至E,使DE=AD,連接BE,CE∵AD為△ABC的中線〔已知∴BD=CD〔中線定義在△ACD和△EBD中BD=CD〔已證∠1=∠2〔對頂角相等AD=ED〔輔助線作法∴△ACD≌△EBD〔SAS∴BE=CA〔全等三角形對應邊相等∵在△ABE中有:AB+BE>AE〔三角形兩邊之和大于第三邊∴AB+AC>2AD。練習:1如圖,AB=6,AC=8,D為BC的中點,求AD的取值范圍。BBADC862如圖,AB=CD,E為BC的中點,∠BAC=∠BCA,求證:AD=2AE。BBECDA3如圖,AB=AC,AD=AE,M為BE中點,∠BAC=∠DAE=90°。求證:AM⊥DC。DDMCDEDADBD4,已知△ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向外作等腰直角三角形,如圖5-2,求證EF=2AD。ABDCABDCEF常見輔助線的作法有以下幾種:遇到等腰三角形,可作底邊上的高,利用"三線合一"的性質(zhì)解題,思維模式是全等變換中的"對折".遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的"旋轉(zhuǎn)".遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的"對折",所考知識點常常是角平分線的性質(zhì)定理或逆定理.過圖形上某一點作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的"平移"或"翻轉(zhuǎn)折疊"截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目.特殊方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答.〔一、倍長中線〔線段造全等1:〔"希望杯"試題已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是_________.2:如圖,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點,試比較BE+CF與EF的大小.3:如圖,△ABC中,BD=DC=AC,E是DC的中點,求證:AD平分∠BAE.中考應用〔09崇文二模以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點.探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系.〔1如圖①當為直角三角形時,AM與DE的位置關(guān)系是,線段AM與DE的數(shù)量關(guān)系是;〔2將圖①中的等腰Rt繞點A沿逆時針方向旋轉(zhuǎn)<0<<90>后,如圖②所示,〔1問中得到的兩個結(jié)論是否發(fā)生改變?并說明理由.〔二、截長補短1.如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC2:如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過點E,求證;AB=AC+BD3:如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP4:如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分,求證:5:如圖在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點,求證;AB-AC>PB-PC中考應用〔08海淀一模例題講解:一、利用轉(zhuǎn)化倍角,構(gòu)造等腰三角形當一個三角形中出現(xiàn)一個角是另一個角的2倍時,我們就可以通過轉(zhuǎn)化倍角尋找到等腰三角形.如圖①中,若∠ABC=2∠C,如果作BD平分∠ABC,則△DBC是等腰三角形;如圖②中,若∠ABC=2∠C,如果延長線CB到D,使BD=BA,連結(jié)AD,則△ADC是等腰三角形;BCDA①②BCDA③BCDA如圖③中,若∠B=2∠ACB,如果以BCDA①②BCDA③BCDADCBA1、如圖,△ABC中,AB=AC,BD⊥AC交AC于D.求證:∠DBC=∠DCBAABC2、如圖,△ABC中,∠ACB=2∠B,BC=2AC.求證:∠A=90ABC二、利用角平分線+平行線,構(gòu)造等腰三角形當一個三角形中出現(xiàn)角平分線和平行線時,我們就可以尋找到等腰三角形.如圖①中,若AD平分∠BAC,AD∥EC,則△ACE是等腰三角形;如圖②中,AD平分∠BAC,DE∥AC,則△ADE是等腰三角形;如圖③中,AD平分∠BAC,CE∥AB,則△ACE是等腰三角形;①ADCBE②ECBDA①ADCBE②ECBDABACDE③④ABFCDEG3、如圖,△ABC中,AB=AC,在AC上取點P,過點P作EF⊥BC,交BA的延長線于點E,垂足為點F.求證:.AE=AP.FFBACPEFCDEBA4、如圖,△ABC中,AD平分∠BAC,E、F分別在BD、AD上,且DE=CDFCDEBA求證:EF∥AB.E圖1AE圖1ABCD當一個三角形中出現(xiàn)角平分線和垂線時,我們就可以尋找到等腰三角形.如圖1中,若AD平分∠BAC,AD⊥DC,則△AEC是等腰三角形.5、如圖2,已知等腰Rt△ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延長線于D。求證:BF=2CD.圖2圖2BFDCA四:其他方法總結(jié)1.截長補短法ABCDABCDE求證:AB+BE=AC.2.倍長中線法題中條件若有中線,可延長一倍,以構(gòu)造全等三角形,從而將分散條件集中在一個三角形內(nèi)。EABCEABCDF求證:AC=BFAE8、已知△ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向外作等腰直角三角形,如圖,求證EF=2AD。AEFBFBCDCD3.平行線法〔或平移法若題設中含有中點可以試過中點作平行線或中位線,對Rt△,有時可作出斜邊的中線.ABCPQO9、△ABC中,∠BAC=60°,∠C=40°ABCPQOOABCOABCPQD圖〔1ABCPQDE圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論