![課件結(jié)構(gòu)化學(xué)chapter1chemical kinetics_第1頁](http://file4.renrendoc.com/view/82e57a18b285d4f12af3dff855b1fc20/82e57a18b285d4f12af3dff855b1fc201.gif)
![課件結(jié)構(gòu)化學(xué)chapter1chemical kinetics_第2頁](http://file4.renrendoc.com/view/82e57a18b285d4f12af3dff855b1fc20/82e57a18b285d4f12af3dff855b1fc202.gif)
![課件結(jié)構(gòu)化學(xué)chapter1chemical kinetics_第3頁](http://file4.renrendoc.com/view/82e57a18b285d4f12af3dff855b1fc20/82e57a18b285d4f12af3dff855b1fc203.gif)
![課件結(jié)構(gòu)化學(xué)chapter1chemical kinetics_第4頁](http://file4.renrendoc.com/view/82e57a18b285d4f12af3dff855b1fc20/82e57a18b285d4f12af3dff855b1fc204.gif)
![課件結(jié)構(gòu)化學(xué)chapter1chemical kinetics_第5頁](http://file4.renrendoc.com/view/82e57a18b285d4f12af3dff855b1fc20/82e57a18b285d4f12af3dff855b1fc205.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023/4/10PhysicalChemistry—ChemicalKineticsPhysicalChemistryBasictheoreticalsystemDisciplinarysystemThermochemistryElectrochemistryPhotochemistryCatalysisColloidandinterfacesMolecularreactiondynamicsThermodynamicsStatisticalthermodynamics(Direction&equilibriumofreactions)KineticsQuantum&structuralchemistry(Rates&mechanism)2023/4/10J.Phys.Chem.(ACS)Established1897-1997A&B2007A&B&C2010A&B&C&LettersPhysicalChemistryJournalsContentsChapter8ChemicalKineticsChapter10ChemicalKineticsforSomeSpecific
SystemsChapter9RateTheoryforElementaryReactions2023/4/102023/4/10Chapter8ChemicalKinetics8.2Ratesofreactions8.3Ratelaws8.4Integratedratelaws8.5Determinationoftheratelaw8.6Temperaturedependenceofreactionrates8.1Introductiontochemicalkinetics2023/4/10Chapter8ChemicalKinetics8.7Elementaryandcomplexreactions8.8Reactionkineticsandequilibriumstate8.10Speculationofreactionmechanism8.9Activationenergyforplexreactions2023/4/108.1IntroductiontoChemicalKineticsThelimitationsofthermodynamicsTheobjectsofchemicalkineticsBriefhistoryofchemicalkinetics2023/4/10Thermodynamics:LimitationsOndirectionsofspontaneousreaction,equilibrium,andthefactorsinfluencingtheequilibrium.Predictingpossibility
ofareaction.Forexample:Thermodynamics:can’tanswer
howtomakethemhappen;howfasttheywilltakeplace(timeasavariable);thereactionmechanism.2023/4/10ChemicalKinetics:MainObjectsThestudyofreactionrates(consideringtime),theinfluencesofvariablessuchastemperature,pressureandcatalystontherates,andthereactionmechanisms.T,P,catalystT,P,catalystChemicalKineticsChemicalKineticspossibilityreality2023/4/10MainTasksofKineticsForexamples:>700KH2+Cl2→2HClr∝[H2][Cl2]1/2H2+Br2→2HBrr∝[H2][Br2]1/2/(1+k’[HBr]/[Br2])H2+I2→2HIr∝[H2][I2]Whysodifferent?Differentreactionmechanism!1.Reactionratesandtheinfluencesofvariablesonrates2.Reactionmechanisms3.Rateofelementaryreactionsandeffectofmolecularstructures4.Natureofchemicalreactions5.Howtocontrolchemicalreactions2023/4/10Empiricalchemicalkinetics
~1864C.M.Guldberg&P.Waage(Norway)LawofMassAction
~1850LudwigF.Wilhelmy(Germany)Hydrolysisofsucrose:r=k[sucrose][H+]Therateisproportionaltotheconcentrationofthereactants
~1865Harcourt&Esson(UK)Ratelaw:differentialandintegratedformulasBriefHistoryofKinetics2023/4/10Dependenceofrateonconcentration~1884JacobusH.van’tHoffr=f(c)=k∏ciaiiai反應(yīng)分子數(shù)(反應(yīng)級(jí)數(shù))Conceptofreactionorder1852-1911BerlinUniversity1901NobelPrize“inrecognitionoftheextraordinaryserviceshehasrenderedbythediscoveryofthelawsofchemicaldynamicsandosmoticpressureinsolutions”.《Studiesindynamicchemistry》~1887WilhelmOstwald1853-1932LeipzigUniversity1909NobelPrize“inrecognitionofhisworkoncatalysisandforhisinvestigationsintothefundamentalprinciplesgoverningchemicalequilibriaandratesofreaction”
BriefHistoryofKinetics2023/4/10Dependenceofrateontemperature1891SvanteA.Arrhenius1903NobelPrize1884J.H.van’tHofflnk=A
?B/T
dependenceofrateontemperature“inrecognitionoftheextraordinaryserviceshehasrenderedtotheadvancementofchemistrybyhiselectrolytictheoryofdissociation”SvanteArrhenius1859-1927StockholmUniversityArrheniusequation12BriefHistoryofKinetics2023/4/10物理化學(xué)三劍客FriedrichWilhelmOstwald1853-1932LeipzigUniversitySvanteA.Arrhenius1859-1927StockholmUniversityJacobusHendricusvan’tHoff1852-1911BerlinUniversity1901NobelPrize1903NobelPrize1909NobelPrizeBriefHistoryofKineticsvan’tHoffandOstwaldB.Harrow,“EminentChemistsofourTime”,19202023/4/102023/4/10Elementarychemicalkinetics1935Eyring:Activatedcomplextheory
(Transitionstatetheory)1913Bodenstein:Chainreactions
Semenoff&Hinshelwood:1956NobelPrize1918Lewis:Collisiontheory
RatetheoryPolanyi,WignerBriefHistoryofKinetics2023/4/10State-to-StateDynamics?MolecularReactionDynamics1960Cross-beamreactionsD.R.Herschbach-Y.T.Lee-J.C.Polanyi“fortheircontributionsconcerningthedynamicsofchemicalelementaryprocesses”(1932-)HarvardUniv.(1929-)Univ.ofToronto(1936-)UCBerkeley161986NobelPrizeBriefHistoryofKinetics2023/4/10Timescale1923H.Hartridge&F.J.W.Roughton~1950ManfredEigen10-6s1967NobelPrizeTimeResolution“fortheirstudiesofextremelyfastchemicalreactions,effectedbydisturbingtheequlibriumbymeansofveryshortpulsesofenergy”10-3sflowmethodorstoppedflowtechniques(1927-)MaxPlanckInstituteofPhysicalChemistry(Goettingen)relaxationmethodBriefHistoryofKinetics2023/4/10~1950R.G.W.Norrish&G.Porter10-6s10-9s10-12s1967NobelPrize(sharedwithM.Eigen)TimeResolution“fortheirstudiesofextremelyfastchemicalreactions,effectedbydisturbingtheequlibriumbymeansofveryshortpulsesofenergy”flashphotolysismethod(1897-1978-)InstituteofPhys.Chem.,Cambridge(1920-2002)RoyalInstitutionofGBBriefHistoryofKinetics2023/4/10~1980AhmedZewailTimeResolution1999NobelPrize“forhisstudiesofthetransitionstatesofchemicalreactionsusingfemtosecondspectroscopy”(1946-)CALTECHFemtochemistry:Atomic-ScaleDynamicsoftheChemicalBondUsingUltrafastLasers10-15sBriefHistoryofKinetics2023/4/108.2RatesofReactionsReactionratesandtheirunits
反應(yīng)速率及其單位、各表達(dá)形式間的互換FocusesHowtomeasurereactionrates2023/4/10VelocityandRatevelocity
vector,withdirectionsratescalar,withoutdirection,allpositiveForexample2023/4/10ExtentofReactionConsiderareaction:aA+bB→gG+hH0=∑nBBB(nB,stoichiometricnumberofB)x=nB(t)–nB(0)nBUnit:mol2023/4/10RateofConversion&RateofReactionConsiderareaction:Rateofconversion:
mol·s-1Rateofreaction:1dnBVnBdt=mol·dm-3·s-12023/4/10RateofReactionatConstantVolumeForanyreactions:
AtconstantV:mol·dm-3·s-12023/4/10RateofReactionExpressedwithPressure
Forgaseousreactions,piseasytomeasure量綱:分壓·時(shí)間-1Unit:Pa·s-1orkPa·s-1
r’=1nBdpBdtForexample:N2+3H2→2NH3r’=dpN2dt1dpH23dt=1dpNH32dt=Foridealgas,pB=cBRTr’=(RT)r2023/4/10InstantaneousRate&InitialRateInstantaneousrateistheslopeofthetangent
Inthecurveshowingthevariationofconcentrationwithtime:Initialrate:r0=-(d[R]/dt)t=0Att=0262023/4/10ReactionRateMeasurements-DrawingKineticCurvesKineticcurvesarechangesinconcentrationsofreactantsorproductswithtime.Withkineticcurves,wecangettherateofreaction.2023/4/10Techniquesformonitoringtheconcentrations(1)Chemicalmethod
Atdifferenttimes,samplingacertainamountofreactants,stoppingthereactionbycooling,dilutionandremovingcatalyst,thenmakingchemicalanalysis2023/4/10(2)Physicalmethod
Monitoringthechangesinconcentrationsusingvariousphysicalproperties(totalpressure,旋光、折射率、電導(dǎo)率、電動(dòng)勢(shì)、粘度etc.)orspectroscopicmethods(IR、UV-VIS、ESR、NMR、ESCA
etc.)Techniquesformonitoringtheconcentrations物理化學(xué)實(shí)驗(yàn)九(旋光法),十(電導(dǎo)法)2023/4/10TechniquesforrapidreactionsFlowmethodandstoppedflowtechniquesmethod(1ms-1s);Relaxationmethod(<1ms);Flashphotolysis(<1ms,-~ps).2023/4/108.3RateLawsRatelaws
速率方程Integratedratelaws
動(dòng)力學(xué)方程
Reactionorder反應(yīng)級(jí)數(shù)Ratecoefficient(rateconstant)反應(yīng)速率常數(shù)(系數(shù))Focuses2023/4/10RateLaws
Inabroadsense,theratelawisanequationthatexpressestherateofreactionasafunctionofallaffectingfactors=f(c,T,catalyst,…)=Incommonsense,theratelawreferstoanequationthatexpressestherateofreactionasafunctionoftheconcentrationsofallspecies=f(c)1dcinidtmustbedeterminedfromexperiments!2023/4/10IntegratedRateLawsRatelaws=f(c)1dcinidtdifferentialequationc=f(t)IntegratedratelawsForexamples:r=-d[A]/dt=k[A]lnkt=[A]0[A]Ratelaw(速率方程)Integratedratelaws(動(dòng)力學(xué)方程)2023/4/10ReactionsPossessingReactionOrdersTher=f(c)mustbedeterminedbykineticexperiments.Onlyinthiscase,reactionordersexist!aA+bB→eE+fFr=f(c)=kcAaAcBaBcEaEcFaF=k∏ciaiiFormanyreactions,2023/4/10ReactionorderThepowertowhichtheconcentrationofaspeciesisraisedistheorderwiththisspeciesTheoverallorderofareaction(n)isthesumoftheindividualordersaA,aB,aE,aFn=aA+aB+aE+aF2023/4/10Note(1)Onlywhenr=f(c)=kcAaAcBaBcEaEcFaF
=k∏ciaiReactionorderexists.(2)Reactionorderisnotthestoichiometricnumber!
Itmaybepositive,negative,integer,fractionorzero.(3)Reactionorderisdeterminedbyexperiments.Itmaybechangedwithexperimentalconditions.2023/4/10ReactionOrder:ExamplesZero-orderFirst-orderSecond-orderThird-orderNegativeFirst-order1.5-orderNosimpleorder2023/4/10Ratecoefficient
Thecoefficientintheratelawiscalledratecoefficientorrateconstant(k).(1)k
isindependentofconcentrationsofreactants.Itisgenerallyisafunctionoftemperature(ifcatalystissettled)(2)Theunitofkdependsonreactionorder(n),
mol1-n·dm3(n-1)·s-1(3)Whenpisusedinsteadofconcentration,kp=kc(RT)1-n2023/4/10PseudoReactionOrder
Inratelaws,iftheconcentrationofonereactantisinlargeexcess,itcanbeincorporatedintothecoefficientterm,theapparentreactionordercalledpseudoreactionorder,willbedecreasedandsimplified.Forexamples:Pseudo-first-orderratelaw2023/4/108.4IntegratedRateLaws
Ratelawsaredifferentialequations,wemustintegratethemifwewanttofindtheconcentrationsasafunctionoftime.Also,theintegratedratelawsaregenerallyusedforobtainingthereactionorderandtheratelaw.2023/4/10FocusTheusuallyused
integratedratelaws積分速率方程(2)Theunitofk速率常數(shù)單位(3)half-life(t1/2)半衰期Thissectionisveryimportant,thefocusistograspthefeaturesofthereactionswithdifferentorders.FocusesForasetofexperimentaldata,howtogetnandk2023/4/10First-OrderReactionsTherateofreactionisproportionaltotheconcentrationofreactantExamples:2023/4/10First-OrderReactions:DifferentialRateLawsorConsider:DifferentialRateLaws2023/4/10First-OrderReactions:IntegratedRateLaws-ln[A]tFirst-orderreaction:-ln[A]vst–ln[A]=kt+C2023/4/10First-OrderReactions:IntegratedRateLawsln[A]0[A]=kt[A]=[A]0e(-kt)ln[A]0[A]0-x=kt=ln11-yyisthefractionofreactedA2023/4/10Half-livesFirstorderreaction:ln[A]0[A]=ktt1/2=ln2/kt3/4=2ln2/kt7/8=3ln2/kAt[A]=?[A]0t1/2
:t3/4:t7/8=1:2:3For1storderreaction:t1/2=ln2/k
t1/2
iscalledthehalf-life(半衰期)2023/4/10TimeConstantsFirstorderreaction:ln[A]0[A]=ktisalsotherelaxationtime(馳豫時(shí)間)isalsothemeanlifetime(平均壽命)[A]=[A]0/et=1/ktiscalledtimeconstant2023/4/10一級(jí)反應(yīng)的特點(diǎn)3.速率系數(shù)k的單位為時(shí)間的負(fù)一次方,時(shí)間t可以是秒(s),分(min),小時(shí)(h),天(d)和年(a)等4.半衰期(half-lifetime)t1/2
是一個(gè)與反應(yīng)物起始濃度無關(guān)的常數(shù),t1/2=ln2/k1.ln[A]與t呈線性關(guān)系,斜率為–k2.=常數(shù)=k==1
t[A]0[A]ln1
t1[A]0[A]1ln1
t2[A]0[A]2ln5.
6.
反應(yīng)間隔t相同,有定值2023/4/10Example1某金屬钚的同位素進(jìn)行β放射,14d后,同位素活性下降了6.85%。試求該同位素的:(1)蛻變常數(shù),(2)半衰期,(3)分解掉90%所需時(shí)間。11ln1ky=-解:(1)1t2023/4/10Example2在373K,氣相反應(yīng)A→2B+C是一級(jí)反應(yīng),從純A開始實(shí)驗(yàn),10min時(shí)測(cè)得體系的總壓是23.47kPa,反應(yīng)終了時(shí)的總壓為36.00kPa。試由這些數(shù)據(jù),(1)計(jì)算A的始?jí)海?2)求反應(yīng)的速率常數(shù)和半衰期,(3)計(jì)算100min時(shí)的A的壓力及總壓。解:
A→2B+Ct=t0
p000t=t
pA2(p0?pA)p0?pAt=t∞02p0
p0p∞=3p0(1)p0=p∞/3=12.00kPa(2)t=10min:pA=(3p0-pt)/2=6.265kPapt=3p0?2pA總壓t
1/2=lnk/2=10.66min(3)t=100min:pA=p0e(-kt)=0.018kPa2023/4/10Second-OrderReactions2023/4/10Second-OrderReactions:IntegratedRateLaw-12AP2023/4/10Second-OrderReactions:Features-1[A]-1tSecond-orderreaction:1/[A]vstHalf-life:2023/4/10Second-OrderReactions:IntegratedRateLaw-2If[A]o=[B]oDifferentialRateLawsA+BP2023/4/10Second-OrderReactions:Features-2[A]-1tSecond-orderreaction:1/[A]vstHalf-life:2023/4/10Second-OrderReactions:IntegratedRateLaw-3If[A]o[B]o2023/4/10二級(jí)反應(yīng)(純二級(jí)或混二級(jí)之[A]0=[B]0)的特點(diǎn)引伸的特點(diǎn):對(duì)的二級(jí)反應(yīng),=1:3:7。1.與t成線性關(guān)系,斜率為k或kA(kA=ak)1[A]2.=k或kA,k的量綱為[濃度]-1
[時(shí)間]-1
1t[1[A]1[A]0]-3.半衰期與起始物濃度成反比2023/4/10二級(jí)反應(yīng)(混二級(jí)之[A]0≠[B]0)的特點(diǎn)3.半衰期只能分別對(duì)A或B定義1.ln與t成線性關(guān)系,斜率為([B]0-[A]0)k[B]/[B]0[A]/[A]02.,速率常數(shù)k的單位為
[濃度]-1
[時(shí)間]-1
2023/4/10自學(xué)(1)二級(jí)反應(yīng)aA+bB→P r=k[A][B](2)零級(jí)反應(yīng)aA→P r=kA2023/4/10nth-orderreaction:IntegratedRateLawsaA→P r=k[A]nConsider:Differentialequation(n≠1)IntegratedRateLaws2023/4/10nth-OrderReaction:Half-Lives(n≠1)2023/4/10nth-OrderReaction:分?jǐn)?shù)壽期(n≠1)2023/4/10n級(jí)反應(yīng)的特點(diǎn)當(dāng)n=0,2,3時(shí),可以獲得對(duì)應(yīng)的反應(yīng)級(jí)數(shù)的積分式。但n≠1,因一級(jí)反應(yīng)有其自身的特點(diǎn),當(dāng)n=1時(shí),有的積分式在數(shù)學(xué)上不成立。1.與t呈線性關(guān)系1[A]n-12.=k或kA,k的量綱為[濃度]1-n[時(shí)間]-1
1(n-1)t[1[A]n-11[A]0n-1]-3.半衰期的表示式為:t1/2=(n-1)kA[A]0n-12n-1-12023/4/108.5DeterminationoftheRateLaw
Fromintegratedratelaws—積分法(嘗試法)Isolationmethod(pseudo-reactionorder)—隔離法Methodofhalf-life—半衰期法Fromdifferentialratelaws—微分法Methodofinitialrates—初速法2023/4/10Focuses
Themostimportantthingfortheempiricalchemicalkineticsisto
establishtheratelaws
fromexperiments.Generally,thereactionorderisdeterminedinthefirststep,thentheratecoefficientisworkerout.本節(jié)要求學(xué)會(huì),從給出的實(shí)驗(yàn)數(shù)據(jù)(濃度、分壓、物理性質(zhì)隨時(shí)間的變化;初速隨濃度的變化等),以最簡(jiǎn)捷的方法確定反應(yīng)級(jí)數(shù)和速率常數(shù)。Focuses2023/4/10FromIntegratedRateLaws
積分法又稱嘗試法。當(dāng)實(shí)驗(yàn)測(cè)得了一系列[A]~
t或x~t的動(dòng)力學(xué)數(shù)據(jù)后,作以下兩種嘗試:1.Putthedataof[A]~tintotheintegratedratelawsfordifferent-orderreactions,thencalculatethekIftheobtainedkisaconstant,thentheassumedreactionorderiscorrect.2.Plot,ln[A]~t,[A]-1~t,[A]-2~t
linear[A]~tzeroth-orderlinearln[A]~tfirst-orderlinear[A]-1~tsecond-order2023/4/10SummaryofIntegratedRateLawsZeroth-orderk=x
t=[A]0-[A]tFirst-orderk
=1
t[A]0[A]lnSecond-order111t[[A][A]0]-k=nth-ordera(b-x)b(a-x)1t(b-a)lnk=[A]0=[B]0
[A]0(a)≠[B]0(b)111(n-1)t[[A]n-1[A]0n-1]-k=[A]0=[B]0=‥*如反應(yīng)物的計(jì)量系數(shù)為n,則右邊應(yīng)除以n2023/4/10Example3t/h481216ρ/[mg?(100cm3)-1]
0.4800.3260.2220.151某抗菌素在人體血液中的分解反應(yīng)具有簡(jiǎn)單的反應(yīng)級(jí)數(shù),給患者注射一針抗菌素后,測(cè)得抗菌素在血液中的質(zhì)量濃度ρ隨時(shí)間的變化如下表所示:(1)試求該分解反應(yīng)的級(jí)數(shù);(2)計(jì)算反應(yīng)的速率常數(shù)和半衰期;(3)若抗菌素在人體血液中的質(zhì)量濃度不低于0.370mg?(100cm3)-1才有效,求應(yīng)該在多長(zhǎng)時(shí)間后必須注射第二針。t/h481216ρ/[mg?(100cm3)-1]
0.4800.3260.2220.151lnρ-0.734-1.121-1.505-1.8902023/4/10Example3t/h481216ρ/[mg?(100cm3)-1]
0.4800.3260.2220.151[A]i/[A]i+11.4721.4691.470等時(shí)間間隔:一級(jí)反應(yīng)[A]i/[A]i+1
=常數(shù)等時(shí)間間隔:二級(jí)反應(yīng)、零級(jí)反應(yīng)?2023/4/10MethodofHalf-lifeExpressionsofhalf-lifet1/2=ln2kIndependentofconcentrationt1/2=1k[A]0與起始濃度成反比t1/2=2k[A]02與起始濃度平方成反比3t1/2=(n-1)k[A]0n-1與起始濃度n-1次方成反比2n-1-1如反應(yīng)物的計(jì)量系數(shù)為n,則右邊應(yīng)用kA(nk)First-orderSecond-ordernth-orderThird-order2023/4/10ACommonWayoftheMethodofHalf-Life
Foranth-orderreaction2.Plotlgt1/2versuslg[A]o,evaluatenfromtheslope1.Selecttwodifferentinitialconcentration[A]oand[A]o’,measurethehalf-lives.Forthesamereaction,Cisthesame,thus,lgt1/2=lgC+(1-n)lg[A]oor,2023/4/10Example42N2O5(g)→4NO2(g)+O2(g)t/min012345[N2O5]/(moldm-3)1.0000.7050.4970.3490.2460.173Determinetheorderofthereactionandcalculatetheratecoefficientandhalflife可將每一時(shí)間間隔起點(diǎn)的反應(yīng)物濃度作為初始濃度,根據(jù)一次的[A]~t結(jié)果確定兩組和多組t1/2~[A]0,簡(jiǎn)便判斷反應(yīng)級(jí)數(shù)。2023/4/10FromDifferentialRateLawsLargererrors,butsuitableforreactionswithnon-integerorderPlotcurveof[A]~tDrawthetangent,workout–d[A]/dtPlotln(-d[A]/dt)vs.ln[A]Procedure:
A→Pt=0
[A]0
0t=t [A] xTheslopeofthestraightlinewillbenPlotvs.ln[A]2023/4/10MethodofInitialRatelgr0=lgk+nlg[A]0Plotlgr0
versuslg[A]0,theslopeofthestraightlinewillben初速法的優(yōu)點(diǎn)在于可以避免產(chǎn)物的干擾,且可適用于較慢的反應(yīng)2023/4/10Example5
Theinitialrateofthereaction(A+B→P)dependedontheinitialconcentrationsofAandBasfollows:Initialconcentration/mol·dm-3cA,01.02.03.01.01.0cB,01.01.01.02.03.0r0/mol·dm-3·s-10.150.300.450.150.15Answer:Assumer=kcAmcBn
Fromthefirst3group,weknow,m=1;Fromthelast2groups,n=0;sor=kcA;k=0.15s-1.Determinetheorderofthereactionandcalculatetheratecoefficient.2023/4/10MethodofIsolationThismethodisforthesimplificationofexperiments,andmustbeusedwithothermethods1.Doexperimentat[A]>>[B]DetermineβDetermineα2.Doexperimentat[B]>>[A]2023/4/10Example:CombinationwithIsolationwithHalf-LifeMethodsForagas-phasereaction,2NO+H2→N2O+H2O,theratelawcanbeexpressedasr=kpNOapH2b,calculatea,b
andk
basedonthefollowingexperimentalresultspNOo/kPapH2o/kPat1/2/s80801.32.61.32.6808019.219.2830415Answer:Forthefirsttwogroups,pNO>>pH2,sopNOcanbeviewedunchanged,
r=kpNOoa
pH2b
=k’pH2b
Thust1/2
isforH2
Becauset1/2
isindependentofpH20,weknowb=1Fromthelattertwogroups,pH2>>pNO
r=kpH20pNOa=k”pNOa.Thust1/2
isforNOBecauset1/2
isproportionalto(pNOo)-1,wegeta=22023/4/10RelationshipofPhysicalPropertywithConcentration
Inkineticexperiments,monitoringthechangesinconcentrationsusingaphysicalproperty(l)isasimpleway,therequirementsforthephysicalpropertyare:1)該物理量對(duì)于反應(yīng)物與產(chǎn)物有明顯差異;2)與濃度有函數(shù)關(guān)系,如線性函數(shù);3)具有加和性。2023/4/10RelationshipConsiderareaction0=∑nB·B設(shè)l0、l及l(fā)∞分別是時(shí)間為0,t及∞時(shí)體系中某物理量的值;[B]0,[B]為0及t時(shí)刻的某物種的濃度;A為某反應(yīng)物,t=∞時(shí)反應(yīng)完全,當(dāng)反應(yīng)進(jìn)度為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國牙釉質(zhì)粘結(jié)劑行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國塑料用群青紫行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球健康飲食膳食計(jì)劃應(yīng)用程序行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球大型掃描電子顯微鏡(SEM)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球螯合鋅鉀硼尿素行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國化學(xué)鍍化學(xué)品行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國危險(xiǎn)區(qū)域軌道衡行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球磁性長(zhǎng)度和角度測(cè)量系統(tǒng)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球食用菌滅菌設(shè)備行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球軍用航空平視顯示器行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招高職單招英語2016-2024年參考題庫含答案解析
- 2025江蘇太倉水務(wù)集團(tuán)招聘18人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 借款人解除合同通知書(2024年版)
- 江蘇省泰州市靖江市2024屆九年級(jí)下學(xué)期中考一模數(shù)學(xué)試卷(含答案)
- 沐足店長(zhǎng)合同范例
- 《旅游資料翻譯》課件
- 《既有軌道交通盾構(gòu)隧道結(jié)構(gòu)安全保護(hù)技術(shù)規(guī)程》
- 2024年安徽省中考數(shù)學(xué)試卷含答案
- 2024年湖南省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 中國證監(jiān)會(huì)證券市場(chǎng)交易結(jié)算資金監(jiān)控系統(tǒng)證券公司接口規(guī)范
- 2025屆天津市部分學(xué)校高三年級(jí)八校聯(lián)考英語試題含解析
評(píng)論
0/150
提交評(píng)論