




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
改進(jìn)的TRUST方法在航磁數(shù)據(jù)線性特征增強(qiáng)中的應(yīng)用Abstract:
Inordertoenhancethelinearfeaturesofaeromagneticdata,animprovedTRUST(TotalVariationReconstructionUsingSplittingandTranslating)methodisproposedinthispaper.InthetraditionalTRUSTalgorithm,itisdifficulttoselectanappropriateregularizationparameterλtobalancethedatafidelitytermandthetotalvariationterm.Therefore,anewregularizationparameterselectionstrategyisproposedintheimprovedTRUSTalgorithm,whichisbasedonthecharacteristicofthepowerspectrumofaeromagneticdata,aimingtoretainthelowfrequencycomponentsandsuppressthehighfrequencynoise.Theproposedmethodisappliedtotherectificationofaeromagneticdatainacomplexgeologicalenvironment,andtheresultsdemonstratethattheimprovedTRUSTmethodcaneffectivelyenhancethelinearfeatures,improvetheapparentsusceptibilitycontrast,andretaintheshapeoftheoriginalanomalies.
1.Introduction
Asanon-invasivegeophysicalexplorationmethod,aeromagneticsurveyhasbeenwidelyusedinmineralexploration,geothermalexploration,andoilandgasexploration.However,aeromagneticdataisinevitablycontaminatedbyvariousnoisesources,suchasculturalnoise,high-frequencyinstrumentalnoise,andregionalmagneticanomalies.Thenoiseinthedatawillaffecttheidentificationandinterpretationofgeologicalstructures,soitisnecessarytoremovethenoiseandenhancethelinearfeaturesofthedata.
Totalvariation(TV)regularizationhasbeeneffectivelyappliedinthefieldofimageprocessingandhasattractedattentionintheprocessingofgeophysicaldatainrecentyears.ThetraditionalTVmethodcaneffectivelysuppressthenoiseandenhancethelinearfeaturesofthedata,butitalsohassomedrawbacks,suchasstaircaseeffectandill-posedproblem.Therefore,amoreadvancedvariation,theTotalExponentialVariation(TEV)method,wasproposedtoovercomethedisadvantagesofTV.TheTEVmethodintroducesanexponentialfunctiontoconstructtheregularizationterm,whichcanpreservetheedgesofthediscontinuousstructuresandeffectivelyremovethenoiseinthedata.However,duetothecomplexcomputationprocessofTEV,itisdifficulttoapplydirectlyintheprocessingoflarge-scalegeophysicaldata.
TheTRUSTalgorithm,introducedbyM.Nikolova,isanextensionofTEVandhasbeensuccessfullyappliedintheprocessingofmagneticandgravitydata.TheTRUSTalgorithmbreaksdowntheTVregularizationtermintosplittingandtranslatingsteps,whichefficientlysolvethehigh-dimensionaloptimizationproblem.However,theselectionoftheregularizationparameterλiscrucialintheTRUSTalgorithm.λcontrolsthetrade-offbetweenthedatafidelitytermandthetotalvariationterm,anditdirectlyaffectstheenhancementeffectofthelinearfeaturesandthesuppressioneffectofthenoise.Inpracticalapplications,itisdifficulttochooseanappropriateλwhichcanoptimizetheenhancementandsuppressioneffects.
Inthispaper,weproposeanimprovedTRUSTmethodandapplyittotheenhancementofthelinearfeaturesofaeromagneticdata.Theimprovedalgorithmintroducesanewregularizationparameterselectionstrategybasedonthepowerspectrumofthedata,whichcanautomaticallybalancethefidelitytermandthetotalvariationterm.Theperformanceoftheproposedalgorithmisdemonstratedinacomplexgeologicalenvironment.TheresultsshowthattheimprovedTRUSTalgorithmcaneffectivelyenhancethelinearfeatures,improvetheapparentsusceptibilitycontrast,andretaintheshapeoftheoriginalanomalies.
2.TheImprovedTRUSTMethod
2.1TheTraditionalTRUSTMethod
TheTRUSTmethodisasplittingandtranslatingalgorithm,whichsolvesthefollowingoptimizationproblem:
argmin_x1/2||y-x||_2^2+λTV(x)
whereyistheobserveddata,TV(x)istheTotalVariationregularizationterm,andλistheregularizationparameter.
TraditionalTVregularizationcanbedefinedas:
TV(x)=∑_(i,j)(x_i,j-x_i-1,j)^2+(x_i,j-x_ij-1)^2
TEVregularizationcanbedefinedas:
TEV(x)=∑_(i,j)exp(-(x_i,j-x_i-1,j)^2/σ^2)+exp(-(x_i,j-x_ij-1)^2/σ^2)
whereσisaparameterthatcontrolsthedegreeofexponentialdecay.
TheTRUSTalgorithmperformsthefollowingsplittingandtranslatingsteps:
Step1:Initializexwiththeobserveddatay.
Step2:Updateubysolvingthefollowingsubproblem:
argmin_u1/2||u-y||_2^2+λ/2||?u-g||_2^2
where?uisthegradientofu,andgisthesolutionoftheconvexconjugateoftheTVorTEVregularization.
Step3:Updatexbysolvingthefollowingsubproblem:
argmin_x1/2||x-u||_2^2+λ/2||?x-g||_2^2
Step4:Updategbysolvingthefollowingsubproblem:
argmin_gλ/2||?x-g||_2^2+<g,?x>,g∈?TV(x)org∈?TEV(x)
where?TV(x)and?TEV(x)arethesubdifferentialsofTV(x)andTEV(x),respectively.
Step5:GobacktoStep2,andrepeattheiterationsuntilacertainstoppingcriterionismet.
2.2TheImprovedTRUSTMethod
InthetraditionalTRUSTalgorithm,theselectionofλiscriticaltotheperformanceofthealgorithm.Atoolargeλwillcauseanover-smoothedresult,whileatoosmallλwillnotbeabletoremovethenoiseeffectively.Toavoidthisproblem,weproposeanewregularizationparameterselectionstrategybasedonthepowerspectrumofthedata.
Thepowerspectrumofthedatadescribesthedistributionoftheenergyofthedatainthefrequencydomain.Inaeromagneticdata,thelowfrequencycomponentsareusuallyrelatedtotheregionalmagneticfield,whilethehighfrequencycomponentsareusuallyrelatedtonoiseorsmallsources.Therefore,intheimprovedTRUSTalgorithm,weusethepowerspectrumtoestimatethelowfrequencycomponentandthehighfrequencycomponentofthedata,andthendetermineλbasedonthesetwocomponents.
TheimprovedTRUSTalgorithmperformsthefollowingsteps:
Step1:Calculatethepowerspectrumofthedatay,anddeterminethefrequencycutofffc,whichisthefrequencyatwhichthespectrumdropstohalfofitsmaximumvalue.
Step2:SmooththedataywithaGaussianfilterofstandarddeviationσ1(f)={2πfc}/[(2π)T]inthefrequencydomain,whereTisthesamplinginterval.
Step3:PerformthetraditionalTRUSTalgorithmonthesmootheddata,andobtainaninitialestimationx1.
Step4:Calculatetheresidualr1=y-x1,andextractthehighfrequencycomponentr2byapplyinganotherGaussianfilterofstandarddeviationσ2(f)={2π(1-fc)}/[(2π)T].
Step5:Calculatetheroughnessoftheinitialestimationx1by:
R1=∑_(i,j)(x1_i,j-x1_i-1,j)^2+(x_i,j-x_ij-1)^2
Step6:Calculatetheroughnessofthehighfrequencycomponentr2by:
R2=∑_(i,j)(r2_i,j-r2_i-1,j)^2+(r2_i,j-r2_ij-1)^2
Step7:Determinetheregularizationparameterλby:
λ=(σ[R1/R2])^2
whereσisthestandarddeviationoftheresidualr1.
Step8:ApplythetraditionalTRUSTalgorithmontheoriginaldataywiththedeterminedλ,andobtainthefinalestimationx.
3.ExperimentResults
TheproposedimprovedTRUSTmethodisappliedtotheenhancementofthelinearfeaturesofaeromagneticdatainacomplexgeologicalenvironment.Thedataiscollectedinaporphyrycopperdeposit,wherethegeologicalcomplexityandhighnoiseposechallengestotheinterpretation.
Figure1showstheoriginalaeromagneticdatabeforeprocessing,wherethemagneticanomaliesareweakandpoorlydefinedduetothehighnoiseandlowsusceptibilitycontrast.Figure2showstheresultusingthetraditionalTRUSTmethodwithafixedλ,wheretheedgesareover-smoothedandsomefeaturesarelost.Figure3showstheresultusingtheimprovedTRUSTmethodwiththeproposedregularizationparameterselectionstrategy,wherethelinearfeaturesareenhanced,andthesusceptibilitycontrastisimproved.Figure4showsthedifferencebetweentheoriginaldataandtheresultusingtheimprovedTRUSTmethod,wheretheanomalyshapesarewellpreserved,andthenoiseiseffectivelyremoved.
Thequantitativeevaluationoftheresultsisconductedbyanalyzingthepowerspectrumofthedataandthelocalanomalyenhancementfactor(LAEF).ThepowerspectrumofthedataafterprocessingbytheimprovedTRUSTmethodshowsthatthelowfrequencycomponentsareretained,andthehighfrequencynoiseissuppressed.TheLAEFoftheanomaliesafterprocessingbytheimprovedTRUSTmethodishigherthanthatoftheoriginaldataorthetraditionalTRUSTmethod,indicatingthatthelinearfeaturesoftheanomaliesareenhanced.
4.Conclusion
Inthispaper,animprovedTRUSTmethodisproposedtoenhancethelinearfeaturesofaeromagneticdata.Theimprovedalgorithmintroducesanovelregularizationparameterselectionstrategybasedonthepowerspectrum,whichcanautomaticallybalancethefidelitytermandthetotalvariationterm.Theexperimentresultsdemonstratethattheproposedmethodcaneffectivelyenhancethelinearfeatures,improvetheapparentsusceptibilitycontrast,andretaintheshapeoftheoriginalanomalies.Theproposedmethodhasthepotentialtoimprovetheaccuracyofmineralresourceexplorationandgeologicalinterpretationincomplexgeologicalenvironments.Furthermore,theproposedmethodhassomeadvantagesoverthetraditionalTV-basedmethods.Firstly,theimprovedTRUSTalgorithmcaneffectivelyremovehigh-frequencynoisewhileretainingthelow-frequencycomponentsofthedata.Thisisachievedbyintroducingfrequency-dependentGaussianfiltersintheregularizationparameterselectionstrategy.Secondly,theproposedmethodcanpreservetheedgesoftheanomaliesandavoidthestaircaseeffect.ThisisbecausetheTEVregularizationtermintheTRUSTalgorithmcanpreservethediscontinuitiesofthestructures.Finally,theproposedmethodcanautomaticallyselecttheregularizationparameterλ,whichisasignificantchallengeinthetraditionalTV-basedmethods.
Insummary,theimprovedTRUSTalgorithmproposedinthispaperisaneffectivemethodforenhancingthelinearfeaturesofaeromagneticdata.Thepowerspectrum-basedregularizationparameterselectionstrategyisaninnovativeapproachthatcanbalancethefidelitytermandthetotalvariationtermandimprovetheaccuracyofinterpretation.Theexperimentresultsshowthattheproposedmethodcaneffectivelyremovethenoise,enhancethelinearfeatures,andretaintheshapeoftheoriginalanomalies.Theproposedmethodhasgreatpotentialforpracticalapplicationsinmineralexplorationandgeologicalinterpretationincomplexgeologicalenvironments.Moreover,theproposedmethodcanbeimprovedfurtherbyincorporatingotherconstraints,suchasdipconstraintsordipangleconstraints,toenhancetheaccuracyofinterpretation.Theseadditionalconstraintscanbeaddedthroughtheuseofpriorgeologicalknowledgeorexpertguidance,providingamoreaccurateandreliableinterpretationoftheunderlyinggeologicalstructures.
Anotheradvantageoftheproposedmethodisitscomputationalefficiency.Byusingaparallelcomputingapproachbasedonthealternatingdirectionmethodofmultipliers(ADMM),theproposedmethodcanhandlelarge-scaledatasetsefficientlyandeffectively.Thismakesitparticularlysuitableforprocessinghigh-resolutionairborneorground-basedmagneticsurveydata.
Furthermore,theproposedmethodcanbeextendedtoothergeophysicaldataprocessingtasks,suchasgravitydataprocessingorelectricalresistivitydataprocessing.Thebasicprincipleoftheproposedmethod,namelytheregularization-basedapproach,canbeappliedtoawiderangeofgeophysicaldataprocessingtasksthatinvolvetheenhancementorsuppressionofspecificfeaturesinthedata.
Overall,theproposedimprovedTRUSTalgorithmoffersapromisingsolutionfortheenhancementoflinearfeaturesinaeromagneticdataprocessing.Itsabilitytoeffectivelyremovenoise,preserveedgesandautomaticallyselecttheregularizationparametermakeitanattractivemethodforpracticalapplicationsinmineralexplorationandgeologicalinterpretation.Asaresult,thispapercontributessignificantlytotheongoingeffortstodevelopadvancedgeophysicaldataprocessingmethodsforimprovedgeologicalmappingandresourceexploration.Inadditiontoitspracticalapplicationsinmineralexplorationandgeologicalmapping,theimprovedTRUSTalgorithmalsohasimportantimplicationsforscientificresearch.Byprovidingamoreaccurateandreliablemethodforenhancinglinearfeaturesinaeromagneticdata,theproposedmethodcanhelpresearchersgainnewinsightsintothegeologicalstructuresandprocessesthatshapetheEarth'scrust.Forexample,theenhancedmagneticdatacanbeusedtoinferthelocationandgeometryofgeologicalfaults,whichcanprovidecluesaboutthetectonicforcesthathaveactedontheregionovergeologicaltimescales.Similarly,theenhancedmagneticdatacanbeusedtoidentifyareasofanomalousmagnetization,whichcanindicatethepresenceofmineraldepositsorhydrothermalsystems.
Inaddition,theimprovedTRUSTalgorithmcanhelpresolvesomeofthechallengesassociatedwithinterpretinggeologicaldatainregionswithcomplexgeologicalstructures.Bysuppressingnoiseandenhancinglinearfeatures,theproposedmethodcanprovideaclearerpictureoftheunderlyinggeologicalframework,whichcanfacili
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃戶外廣告牌合同
- 市場(chǎng)推廣與渠道分銷(xiāo)協(xié)議書(shū)
- AI輔助醫(yī)生診斷系統(tǒng)研發(fā)合作協(xié)議
- 企業(yè)客戶關(guān)系管理系統(tǒng)績(jī)效評(píng)估協(xié)議
- 養(yǎng)殖業(yè)行業(yè)知識(shí)培訓(xùn)課件
- 高考語(yǔ)文答題技巧及方法
- 物流倉(cāng)儲(chǔ)安全管理規(guī)范
- 企業(yè)危機(jī)公關(guān)處理與媒體應(yīng)對(duì)預(yù)案
- 高考英語(yǔ)題型 組合規(guī)范練習(xí)
- 餐飲服務(wù)提供合同細(xì)節(jié)
- 工業(yè)項(xiàng)目投資估算及財(cái)務(wù)評(píng)價(jià)附表(有計(jì)算公式)
- 北京市2024年中考英語(yǔ)真題【附參考答案】
- 某大學(xué)中醫(yī)學(xué)(專(zhuān)升本)學(xué)士學(xué)位考試復(fù)習(xí)題
- 縣醫(yī)院聘請(qǐng)社會(huì)監(jiān)督員實(shí)施方案(經(jīng)典版)
- 江西省數(shù)字產(chǎn)業(yè)集團(tuán)有限公司招聘筆試真題2023
- DL-T+5174-2020燃?xì)?蒸汽聯(lián)合循環(huán)電廠設(shè)計(jì)規(guī)范
- 弟子規(guī)帶拼音全文課件省公共課一等獎(jiǎng)全國(guó)賽課獲獎(jiǎng)?wù)n件
- 2024年揚(yáng)州市職業(yè)大學(xué)單招職業(yè)適應(yīng)性測(cè)試題庫(kù)附答案
- 猜猜我有多愛(ài)你-繪本故事
- 人教版pep小學(xué)四年級(jí)英語(yǔ)下冊(cè)全冊(cè)完整
- 人教部編版《道德與法治》六年級(jí)下冊(cè)第9課《日益重要的國(guó)際組織》精美課件
評(píng)論
0/150
提交評(píng)論