改進(jìn)的TRUST方法在航磁數(shù)據(jù)線性特征增強(qiáng)中的應(yīng)用_第1頁(yè)
改進(jìn)的TRUST方法在航磁數(shù)據(jù)線性特征增強(qiáng)中的應(yīng)用_第2頁(yè)
改進(jìn)的TRUST方法在航磁數(shù)據(jù)線性特征增強(qiáng)中的應(yīng)用_第3頁(yè)
改進(jìn)的TRUST方法在航磁數(shù)據(jù)線性特征增強(qiáng)中的應(yīng)用_第4頁(yè)
改進(jìn)的TRUST方法在航磁數(shù)據(jù)線性特征增強(qiáng)中的應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

改進(jìn)的TRUST方法在航磁數(shù)據(jù)線性特征增強(qiáng)中的應(yīng)用Abstract:

Inordertoenhancethelinearfeaturesofaeromagneticdata,animprovedTRUST(TotalVariationReconstructionUsingSplittingandTranslating)methodisproposedinthispaper.InthetraditionalTRUSTalgorithm,itisdifficulttoselectanappropriateregularizationparameterλtobalancethedatafidelitytermandthetotalvariationterm.Therefore,anewregularizationparameterselectionstrategyisproposedintheimprovedTRUSTalgorithm,whichisbasedonthecharacteristicofthepowerspectrumofaeromagneticdata,aimingtoretainthelowfrequencycomponentsandsuppressthehighfrequencynoise.Theproposedmethodisappliedtotherectificationofaeromagneticdatainacomplexgeologicalenvironment,andtheresultsdemonstratethattheimprovedTRUSTmethodcaneffectivelyenhancethelinearfeatures,improvetheapparentsusceptibilitycontrast,andretaintheshapeoftheoriginalanomalies.

1.Introduction

Asanon-invasivegeophysicalexplorationmethod,aeromagneticsurveyhasbeenwidelyusedinmineralexploration,geothermalexploration,andoilandgasexploration.However,aeromagneticdataisinevitablycontaminatedbyvariousnoisesources,suchasculturalnoise,high-frequencyinstrumentalnoise,andregionalmagneticanomalies.Thenoiseinthedatawillaffecttheidentificationandinterpretationofgeologicalstructures,soitisnecessarytoremovethenoiseandenhancethelinearfeaturesofthedata.

Totalvariation(TV)regularizationhasbeeneffectivelyappliedinthefieldofimageprocessingandhasattractedattentionintheprocessingofgeophysicaldatainrecentyears.ThetraditionalTVmethodcaneffectivelysuppressthenoiseandenhancethelinearfeaturesofthedata,butitalsohassomedrawbacks,suchasstaircaseeffectandill-posedproblem.Therefore,amoreadvancedvariation,theTotalExponentialVariation(TEV)method,wasproposedtoovercomethedisadvantagesofTV.TheTEVmethodintroducesanexponentialfunctiontoconstructtheregularizationterm,whichcanpreservetheedgesofthediscontinuousstructuresandeffectivelyremovethenoiseinthedata.However,duetothecomplexcomputationprocessofTEV,itisdifficulttoapplydirectlyintheprocessingoflarge-scalegeophysicaldata.

TheTRUSTalgorithm,introducedbyM.Nikolova,isanextensionofTEVandhasbeensuccessfullyappliedintheprocessingofmagneticandgravitydata.TheTRUSTalgorithmbreaksdowntheTVregularizationtermintosplittingandtranslatingsteps,whichefficientlysolvethehigh-dimensionaloptimizationproblem.However,theselectionoftheregularizationparameterλiscrucialintheTRUSTalgorithm.λcontrolsthetrade-offbetweenthedatafidelitytermandthetotalvariationterm,anditdirectlyaffectstheenhancementeffectofthelinearfeaturesandthesuppressioneffectofthenoise.Inpracticalapplications,itisdifficulttochooseanappropriateλwhichcanoptimizetheenhancementandsuppressioneffects.

Inthispaper,weproposeanimprovedTRUSTmethodandapplyittotheenhancementofthelinearfeaturesofaeromagneticdata.Theimprovedalgorithmintroducesanewregularizationparameterselectionstrategybasedonthepowerspectrumofthedata,whichcanautomaticallybalancethefidelitytermandthetotalvariationterm.Theperformanceoftheproposedalgorithmisdemonstratedinacomplexgeologicalenvironment.TheresultsshowthattheimprovedTRUSTalgorithmcaneffectivelyenhancethelinearfeatures,improvetheapparentsusceptibilitycontrast,andretaintheshapeoftheoriginalanomalies.

2.TheImprovedTRUSTMethod

2.1TheTraditionalTRUSTMethod

TheTRUSTmethodisasplittingandtranslatingalgorithm,whichsolvesthefollowingoptimizationproblem:

argmin_x1/2||y-x||_2^2+λTV(x)

whereyistheobserveddata,TV(x)istheTotalVariationregularizationterm,andλistheregularizationparameter.

TraditionalTVregularizationcanbedefinedas:

TV(x)=∑_(i,j)(x_i,j-x_i-1,j)^2+(x_i,j-x_ij-1)^2

TEVregularizationcanbedefinedas:

TEV(x)=∑_(i,j)exp(-(x_i,j-x_i-1,j)^2/σ^2)+exp(-(x_i,j-x_ij-1)^2/σ^2)

whereσisaparameterthatcontrolsthedegreeofexponentialdecay.

TheTRUSTalgorithmperformsthefollowingsplittingandtranslatingsteps:

Step1:Initializexwiththeobserveddatay.

Step2:Updateubysolvingthefollowingsubproblem:

argmin_u1/2||u-y||_2^2+λ/2||?u-g||_2^2

where?uisthegradientofu,andgisthesolutionoftheconvexconjugateoftheTVorTEVregularization.

Step3:Updatexbysolvingthefollowingsubproblem:

argmin_x1/2||x-u||_2^2+λ/2||?x-g||_2^2

Step4:Updategbysolvingthefollowingsubproblem:

argmin_gλ/2||?x-g||_2^2+<g,?x>,g∈?TV(x)org∈?TEV(x)

where?TV(x)and?TEV(x)arethesubdifferentialsofTV(x)andTEV(x),respectively.

Step5:GobacktoStep2,andrepeattheiterationsuntilacertainstoppingcriterionismet.

2.2TheImprovedTRUSTMethod

InthetraditionalTRUSTalgorithm,theselectionofλiscriticaltotheperformanceofthealgorithm.Atoolargeλwillcauseanover-smoothedresult,whileatoosmallλwillnotbeabletoremovethenoiseeffectively.Toavoidthisproblem,weproposeanewregularizationparameterselectionstrategybasedonthepowerspectrumofthedata.

Thepowerspectrumofthedatadescribesthedistributionoftheenergyofthedatainthefrequencydomain.Inaeromagneticdata,thelowfrequencycomponentsareusuallyrelatedtotheregionalmagneticfield,whilethehighfrequencycomponentsareusuallyrelatedtonoiseorsmallsources.Therefore,intheimprovedTRUSTalgorithm,weusethepowerspectrumtoestimatethelowfrequencycomponentandthehighfrequencycomponentofthedata,andthendetermineλbasedonthesetwocomponents.

TheimprovedTRUSTalgorithmperformsthefollowingsteps:

Step1:Calculatethepowerspectrumofthedatay,anddeterminethefrequencycutofffc,whichisthefrequencyatwhichthespectrumdropstohalfofitsmaximumvalue.

Step2:SmooththedataywithaGaussianfilterofstandarddeviationσ1(f)={2πfc}/[(2π)T]inthefrequencydomain,whereTisthesamplinginterval.

Step3:PerformthetraditionalTRUSTalgorithmonthesmootheddata,andobtainaninitialestimationx1.

Step4:Calculatetheresidualr1=y-x1,andextractthehighfrequencycomponentr2byapplyinganotherGaussianfilterofstandarddeviationσ2(f)={2π(1-fc)}/[(2π)T].

Step5:Calculatetheroughnessoftheinitialestimationx1by:

R1=∑_(i,j)(x1_i,j-x1_i-1,j)^2+(x_i,j-x_ij-1)^2

Step6:Calculatetheroughnessofthehighfrequencycomponentr2by:

R2=∑_(i,j)(r2_i,j-r2_i-1,j)^2+(r2_i,j-r2_ij-1)^2

Step7:Determinetheregularizationparameterλby:

λ=(σ[R1/R2])^2

whereσisthestandarddeviationoftheresidualr1.

Step8:ApplythetraditionalTRUSTalgorithmontheoriginaldataywiththedeterminedλ,andobtainthefinalestimationx.

3.ExperimentResults

TheproposedimprovedTRUSTmethodisappliedtotheenhancementofthelinearfeaturesofaeromagneticdatainacomplexgeologicalenvironment.Thedataiscollectedinaporphyrycopperdeposit,wherethegeologicalcomplexityandhighnoiseposechallengestotheinterpretation.

Figure1showstheoriginalaeromagneticdatabeforeprocessing,wherethemagneticanomaliesareweakandpoorlydefinedduetothehighnoiseandlowsusceptibilitycontrast.Figure2showstheresultusingthetraditionalTRUSTmethodwithafixedλ,wheretheedgesareover-smoothedandsomefeaturesarelost.Figure3showstheresultusingtheimprovedTRUSTmethodwiththeproposedregularizationparameterselectionstrategy,wherethelinearfeaturesareenhanced,andthesusceptibilitycontrastisimproved.Figure4showsthedifferencebetweentheoriginaldataandtheresultusingtheimprovedTRUSTmethod,wheretheanomalyshapesarewellpreserved,andthenoiseiseffectivelyremoved.

Thequantitativeevaluationoftheresultsisconductedbyanalyzingthepowerspectrumofthedataandthelocalanomalyenhancementfactor(LAEF).ThepowerspectrumofthedataafterprocessingbytheimprovedTRUSTmethodshowsthatthelowfrequencycomponentsareretained,andthehighfrequencynoiseissuppressed.TheLAEFoftheanomaliesafterprocessingbytheimprovedTRUSTmethodishigherthanthatoftheoriginaldataorthetraditionalTRUSTmethod,indicatingthatthelinearfeaturesoftheanomaliesareenhanced.

4.Conclusion

Inthispaper,animprovedTRUSTmethodisproposedtoenhancethelinearfeaturesofaeromagneticdata.Theimprovedalgorithmintroducesanovelregularizationparameterselectionstrategybasedonthepowerspectrum,whichcanautomaticallybalancethefidelitytermandthetotalvariationterm.Theexperimentresultsdemonstratethattheproposedmethodcaneffectivelyenhancethelinearfeatures,improvetheapparentsusceptibilitycontrast,andretaintheshapeoftheoriginalanomalies.Theproposedmethodhasthepotentialtoimprovetheaccuracyofmineralresourceexplorationandgeologicalinterpretationincomplexgeologicalenvironments.Furthermore,theproposedmethodhassomeadvantagesoverthetraditionalTV-basedmethods.Firstly,theimprovedTRUSTalgorithmcaneffectivelyremovehigh-frequencynoisewhileretainingthelow-frequencycomponentsofthedata.Thisisachievedbyintroducingfrequency-dependentGaussianfiltersintheregularizationparameterselectionstrategy.Secondly,theproposedmethodcanpreservetheedgesoftheanomaliesandavoidthestaircaseeffect.ThisisbecausetheTEVregularizationtermintheTRUSTalgorithmcanpreservethediscontinuitiesofthestructures.Finally,theproposedmethodcanautomaticallyselecttheregularizationparameterλ,whichisasignificantchallengeinthetraditionalTV-basedmethods.

Insummary,theimprovedTRUSTalgorithmproposedinthispaperisaneffectivemethodforenhancingthelinearfeaturesofaeromagneticdata.Thepowerspectrum-basedregularizationparameterselectionstrategyisaninnovativeapproachthatcanbalancethefidelitytermandthetotalvariationtermandimprovetheaccuracyofinterpretation.Theexperimentresultsshowthattheproposedmethodcaneffectivelyremovethenoise,enhancethelinearfeatures,andretaintheshapeoftheoriginalanomalies.Theproposedmethodhasgreatpotentialforpracticalapplicationsinmineralexplorationandgeologicalinterpretationincomplexgeologicalenvironments.Moreover,theproposedmethodcanbeimprovedfurtherbyincorporatingotherconstraints,suchasdipconstraintsordipangleconstraints,toenhancetheaccuracyofinterpretation.Theseadditionalconstraintscanbeaddedthroughtheuseofpriorgeologicalknowledgeorexpertguidance,providingamoreaccurateandreliableinterpretationoftheunderlyinggeologicalstructures.

Anotheradvantageoftheproposedmethodisitscomputationalefficiency.Byusingaparallelcomputingapproachbasedonthealternatingdirectionmethodofmultipliers(ADMM),theproposedmethodcanhandlelarge-scaledatasetsefficientlyandeffectively.Thismakesitparticularlysuitableforprocessinghigh-resolutionairborneorground-basedmagneticsurveydata.

Furthermore,theproposedmethodcanbeextendedtoothergeophysicaldataprocessingtasks,suchasgravitydataprocessingorelectricalresistivitydataprocessing.Thebasicprincipleoftheproposedmethod,namelytheregularization-basedapproach,canbeappliedtoawiderangeofgeophysicaldataprocessingtasksthatinvolvetheenhancementorsuppressionofspecificfeaturesinthedata.

Overall,theproposedimprovedTRUSTalgorithmoffersapromisingsolutionfortheenhancementoflinearfeaturesinaeromagneticdataprocessing.Itsabilitytoeffectivelyremovenoise,preserveedgesandautomaticallyselecttheregularizationparametermakeitanattractivemethodforpracticalapplicationsinmineralexplorationandgeologicalinterpretation.Asaresult,thispapercontributessignificantlytotheongoingeffortstodevelopadvancedgeophysicaldataprocessingmethodsforimprovedgeologicalmappingandresourceexploration.Inadditiontoitspracticalapplicationsinmineralexplorationandgeologicalmapping,theimprovedTRUSTalgorithmalsohasimportantimplicationsforscientificresearch.Byprovidingamoreaccurateandreliablemethodforenhancinglinearfeaturesinaeromagneticdata,theproposedmethodcanhelpresearchersgainnewinsightsintothegeologicalstructuresandprocessesthatshapetheEarth'scrust.Forexample,theenhancedmagneticdatacanbeusedtoinferthelocationandgeometryofgeologicalfaults,whichcanprovidecluesaboutthetectonicforcesthathaveactedontheregionovergeologicaltimescales.Similarly,theenhancedmagneticdatacanbeusedtoidentifyareasofanomalousmagnetization,whichcanindicatethepresenceofmineraldepositsorhydrothermalsystems.

Inaddition,theimprovedTRUSTalgorithmcanhelpresolvesomeofthechallengesassociatedwithinterpretinggeologicaldatainregionswithcomplexgeologicalstructures.Bysuppressingnoiseandenhancinglinearfeatures,theproposedmethodcanprovideaclearerpictureoftheunderlyinggeologicalframework,whichcanfacili

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論