陜西省安康紫陽縣聯(lián)考2023屆中考適應性考試數(shù)學試題含解析_第1頁
陜西省安康紫陽縣聯(lián)考2023屆中考適應性考試數(shù)學試題含解析_第2頁
陜西省安康紫陽縣聯(lián)考2023屆中考適應性考試數(shù)學試題含解析_第3頁
陜西省安康紫陽縣聯(lián)考2023屆中考適應性考試數(shù)學試題含解析_第4頁
陜西省安康紫陽縣聯(lián)考2023屆中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC2.如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+23.已知是二元一次方程組的解,則的算術平方根為()A.±2 B. C.2 D.44.某種微生物半徑約為0.00000637米,該數(shù)字用科學記數(shù)法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣75.一個兩位數(shù),它的十位數(shù)字是3,個位數(shù)字是拋擲一枚質地均勻的骰子(六個面分別標有數(shù)字1﹣6)朝上一面的數(shù)字,任意拋擲這枚骰子一次,得到的兩位數(shù)是3的倍數(shù)的概率等于()A. B. C. D.6.如圖1,點O為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處,柱柱同學操控機器人以每秒1個單位長度的速度在圖1中給出線段路徑上運行,柱柱同學將機器人運行時間設為t秒,機器人到點A的距離設為y,得到函數(shù)圖象如圖2,通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當t=3時,機器人一定位于點O;③機器人一定經(jīng)過點D;④機器人一定經(jīng)過點E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④7.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣38.如圖是由兩個小正方體和一個圓錐體組成的立體圖形,其主視圖是()A. B. C. D.9.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.410.為了解當?shù)貧鉁刈兓闆r,某研究小組記錄了寒假期間連續(xù)6天的最高氣溫,結果如下(單位:﹣6,﹣1,x,2,﹣1,1.若這組數(shù)據(jù)的中位數(shù)是﹣1,則下列結論錯誤的是()A.方差是8 B.極差是9 C.眾數(shù)是﹣1 D.平均數(shù)是﹣1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知,D、E分別是邊AB、AC上的點,且設,,那么______用向量、表示12.如圖,在平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(-3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標為__.13.如圖,直線l1∥l2∥l3,直線AC分別交l1,l2,l3于點A,B,C;直線DF分別交l1,l2,l3于點D,E,F(xiàn).AC與DF相交于點H,且AH=2,HB=1,BC=5,則DEEF的值為14.如圖,在△ABC中,點E,F(xiàn)分別是AC,BC的中點,若S四邊形ABFE=9,則S三角形EFC=________.15.△ABC的頂點都在方格紙的格點上,則sinA=_▲.16.如圖是“已知一條直角邊和斜邊作直角三角形”的尺規(guī)作圖過程已知:線段a、b,求作:.使得斜邊AB=b,AC=a作法:如圖.(1)作射線AP,截取線段AB=b;(2)以AB為直徑,作⊙O;(3)以點A為圓心,a的長為半徑作弧交⊙O于點C;(4)連接AC、CB.即為所求作的直角三角形.請回答:該尺規(guī)作圖的依據(jù)是______.17.如圖,菱形ABCD的對角線的長分別為2和5,P是對角線AC上任一點(點P不與點A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是__________.三、解答題(共7小題,滿分69分)18.(10分)有一水果店,從批發(fā)市場按4元/千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質,平均每天有50千克變質丟棄,且每存放一天需要各種費用300元,據(jù)預測,每天每千克價格上漲0.1元.設x天后每千克蘋果的價格為p元,寫出p與x的函數(shù)關系式;若存放x天后將蘋果一次性售出,設銷售總金額為y元,求出y與x的函數(shù)關系式;該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?19.(5分)為了抓住梵凈山文化藝術節(jié)的商機,某商店決定購進A、B兩種藝術節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.(1)求購進A、B兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?20.(8分)(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計■1(1)寫出a,b,c的值;(2)請估計這1000名學生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.21.(10分)我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務,按要求必須在14天內完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關系:工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?設第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關系式,并求出第幾天時利潤最大,最大利潤是多少?22.(10分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數(shù)關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.23.(12分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現(xiàn)的結果;小黃和小石做游戲,制定了兩個游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時,小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.24.(14分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點,AE⊥BD于E,且DB=DA.求證:AE=CD.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【點睛】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點,熟練掌握全等三角形的判定方法是解決問題的關鍵.2、C【解析】當⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.3、C【解析】二元一次方程組的解和解二元一次方程組,求代數(shù)式的值,算術平方根.【分析】∵是二元一次方程組的解,∴,解得.∴.即的算術平方根為1.故選C.4、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000637的小數(shù)點向右移動6位得到6.37所以0.00000637用科學記數(shù)法表示為6.37×10﹣6,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、B【解析】

直接得出兩位數(shù)是3的倍數(shù)的個數(shù),再利用概率公式求出答案.【詳解】∵一枚質地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,十位數(shù)為3,則兩位數(shù)是3的倍數(shù)的個數(shù)為2.∴得到的兩位數(shù)是3的倍數(shù)的概率為:=.故答案選:B.【點睛】本題考查了概率的知識點,解題的關鍵是根據(jù)題意找出兩位數(shù)是3的倍數(shù)的個數(shù)再運用概率公式解答即可.6、C【解析】

根據(jù)圖象起始位置猜想點B或F為起點,則可以判斷①正確,④錯誤.結合圖象判斷3≤t≤4圖象的對稱性可以判斷②正確.結合圖象易得③正確.【詳解】解:由圖象可知,機器人距離點A1個單位長度,可能在F或B點,則正六邊形邊長為1.故①正確;觀察圖象t在3-4之間時,圖象具有對稱性則可知,機器人在OB或OF上,則當t=3時,機器人距離點A距離為1個單位長度,機器人一定位于點O,故②正確;所有點中,只有點D到A距離為2個單位,故③正確;因為機器人可能在F點或B點出發(fā),當從B出發(fā)時,不經(jīng)過點E,故④錯誤.故選:C.【點睛】本題為動點問題的函數(shù)圖象探究題,解答時要注意動點到達臨界前后時圖象的變化趨勢.7、A【解析】

方程變形后,配方得到結果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.【點睛】本題考查的知識點是了解一元二次方程﹣配方法,解題關鍵是熟練掌握完全平方公式.8、B【解析】主視圖是從正面看得到的視圖,從正面看上面圓錐看見的是:三角形,下面兩個正方體看見的是兩個正方形.故選B.9、C【解析】

根據(jù)等腰三角形的性質和勾股定理解答即可.【詳解】解:∵點A,D分別對應數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質,注意等腰三角形的三線合一,熟練運用勾股定理.10、A【解析】根據(jù)題意可知x=-1,

平均數(shù)=(-6-1-1-1+2+1)÷6=-1,

∵數(shù)據(jù)-1出現(xiàn)兩次最多,

∴眾數(shù)為-1,

極差=1-(-6)=2,

方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.

故選A.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質以及向量的運算.12、(-2,7).【解析】

解:過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(﹣7,2),∴反比例函數(shù)的解析式為:y=﹣①,點C的坐標為:(﹣4,8).設直線BC的解析式為:y=kx+b,則解得:∴直線BC的解析式為:y=﹣x+6②,聯(lián)立①②得:或(舍去),∴點E的坐標為:(﹣2,7).故答案為(﹣2,7).13、3【解析】試題解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考點:平行線分線段成比例.14、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設S△CEF=x,根據(jù)相似三角形的性質可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點E,F(xiàn)分別是AC,BC的中點,∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經(jīng)檢驗:是所列方程的解.故答案為:3.點睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關鍵.15、【解析】

在直角△ABD中利用勾股定理求得AD的長,然后利用正弦的定義求解.【詳解】在直角△ABD中,BD=1,AB=2,則AD===,則sinA===.故答案是:.16、等圓的半徑相等,直徑所對的圓周角是直角,三角形定義【解析】

根據(jù)圓周角定理可判斷△ABC為直角三角形.【詳解】根據(jù)作圖得AB為直徑,則利用圓周角定理可判斷∠ACB=90°,從而得到△ABC滿足條件.故答案為:等圓的半徑相等,直徑所對的圓周角是直角,三角形定義.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了圓周角定理.17、【解析】

根據(jù)題意可得陰影部分的面積等于△ABC的面積,因為△ABC的面積是菱形面積的一半,根據(jù)已知可求得菱形的面積則不難求得陰影部分的面積.【詳解】設AP,EF交于O點,∵四邊形ABCD為菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四邊形AEFP是平行四邊形.∴S△POF=S△AOE.即陰影部分的面積等于△ABC的面積.∵△ABC的面積等于菱形ABCD的面積的一半,菱形ABCD的面積=ACBD=5,∴圖中陰影部分的面積為5÷2=.三、解答題(共7小題,滿分69分)18、;(3)該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【解析】

(1)根據(jù)按每千克元的市場價收購了這種蘋果千克,此后每天每千克蘋果價格會上漲元,進而得出天后每千克蘋果的價格為元與的函數(shù)關系;(2)根據(jù)每千克售價乘以銷量等于銷售總金額,求出即可;(3)利用總售價-成本-費用=利潤,進而求出即可.【詳解】根據(jù)題意知,;.當時,最大利潤12500元,答:該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【點睛】此題主要考查了二次函數(shù)的應用以及二次函數(shù)最值求法,得出與的函數(shù)關系是解題關鍵.19、(1)A種紀念品需要100元,購進一件B種紀念品需要50元(2)共有4種進貨方案(3)當購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元【解析】解:(1)設該商店購進一件A種紀念品需要a元,購進一件B種紀念品需要b元,根據(jù)題意得方程組得:,…2分解方程組得:,∴購進一件A種紀念品需要100元,購進一件B種紀念品需要50元…4分;(2)設該商店購進A種紀念品x個,則購進B種紀念品有(100﹣x)個,∴,…6分解得:50≤x≤53,…7分∵x為正整數(shù),∴共有4種進貨方案…8分;(3)因為B種紀念品利潤較高,故B種數(shù)量越多總利潤越高,因此選擇購A種50件,B種50件.…10分總利潤=50×20+50×30=2500(元)∴當購進A種紀念品50件,B種紀念品50件時,可獲最大利潤,最大利潤是2500元.…12分20、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計算出樣本總人數(shù),再分別計算出a,b,c的值;(2)先計算出競賽分數(shù)不低于70分的頻率,根據(jù)樣本估計總體的思想,計算出1000名學生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學來自一組的情況,利用求概率公式計算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競賽分數(shù)不低于70分的頻率是0.5+0.06+0.04=0.6,根據(jù)樣本估計總體的思想,有:1000×0.6=600(人)∴這1000名學生中有600人的競賽成績不低于70分;(3)成績是80分以上的同學共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學,情形如樹形圖所示,共有20種情況:抽取兩名同學在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學來自同一組的概率P==【點睛】本題考查了頻數(shù)、頻率、總數(shù)間關系及用列表法或樹形圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹形圖法適合兩步或兩步以上完成的事件;概率=所求情況數(shù)與總情況數(shù)之比.21、(1)工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件;(2)第11天時,利潤最大,最大利潤是845元.【解析】分析:(1)根據(jù)y=70求得x即可;(2)先根據(jù)函數(shù)圖象求得P關于x的函數(shù)解析式,再結合x的范圍分類討論,根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質求得最值即可.本題解析:解:(1)若7.5x=70,得x=>4,不符合題意;則5x+10=70,解得x=12.答:工人甲第12天生產(chǎn)的產(chǎn)品數(shù)量為70件.(2)由函數(shù)圖象知,當0≤x≤4時,P=40,當4<x≤14時,設P=kx+b,將(4,40)、(14,50)代入,得解得∴P=x+36.①當0≤x≤4時,W=(60-40)·7.5x=150x,∵W隨x的增大而增大,∴當x=4時,W最大=600;②當4<x≤14時,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴當x=11時,W最大=845.∵845>600,∴當x=11時,W取得最大值845元.答:第11天時,利潤最大,最大利潤是845元.點睛:本題考查了一次函數(shù)的應用、二次函數(shù)的應用,解題的關鍵是理解題意,記住利潤=出廠價-成本,學會利用函數(shù)的性質解決最值問題.22、(1)每部型手機的銷售利潤為元,每部型手機的銷售利潤為元;(2)①;②手機店購進部型手機和部型手機的銷售利潤最大;(3)手機店購進部型手機和部型手機的銷售利潤最大.【解析】

(1)設每部型手機的銷

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論