江西省贛州市興國縣達(dá)標(biāo)名校2023年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第1頁
江西省贛州市興國縣達(dá)標(biāo)名校2023年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第2頁
江西省贛州市興國縣達(dá)標(biāo)名校2023年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第3頁
江西省贛州市興國縣達(dá)標(biāo)名校2023年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第4頁
江西省贛州市興國縣達(dá)標(biāo)名校2023年中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運(yùn)算正確的是()A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2?x﹣3=x﹣12.sin45°的值等于()A. B.1 C. D.3.如圖1,點(diǎn)E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿BE→ED→DC運(yùn)動到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動到點(diǎn)C停止,它們運(yùn)動的速度都是1cm/s.若點(diǎn)P、Q同時開始運(yùn)動,設(shè)運(yùn)動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結(jié)論:①當(dāng)0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運(yùn)動過程中,使得△ABP是等腰三角形的P點(diǎn)一共有3個;⑤當(dāng)△BPQ與△BEA相似時,t=14.1.其中正確結(jié)論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤4.輪船沿江從港順流行駛到港,比從港返回港少用3小時,若船速為26千米/時,水速為2千米/時,求港和港相距多少千米.設(shè)港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.5.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.6.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點(diǎn)O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯颍?0m/s的速度行駛,從不同出口駛出,其間兩車到點(diǎn)O的距離y(m)與時間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m7.下列命題是真命題的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共頂點(diǎn)的兩個角是對頂角 D.等腰三角形兩底角相等8.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F,若D為BC邊上的中點(diǎn),M為線段EF上一點(diǎn),則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm9.某中學(xué)籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數(shù)1542關(guān)于這12名隊員的年齡,下列說法錯誤的是()A.眾數(shù)是14歲 B.極差是3歲 C.中位數(shù)是14.5歲 D.平均數(shù)是14.8歲10.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設(shè)動車速度為每小時x千米,則可列方程為()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.某小區(qū)購買了銀杏樹和玉蘭樹共150棵用來美化小區(qū)環(huán)境,購買銀杏樹用了12000元,購買玉蘭樹用了9000元.已知玉蘭樹的單價是銀杏樹單價的1.5倍,求銀杏樹和玉蘭樹的單價.設(shè)銀杏樹的單價為x元,可列方程為______.12.拋物線y=(x﹣3)2+1的頂點(diǎn)坐標(biāo)是____.13.分解因式:3m2﹣6mn+3n2=_____.14.如圖所示,把一張長方形紙片沿折疊后,點(diǎn)分別落在點(diǎn)的位置.若,則等于________.15.一元二次方程x2﹣4=0的解是._________16.分解因式:=___________.17.如圖,數(shù)軸上點(diǎn)A表示的數(shù)為a,化簡:a_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在Rt△ABC中,∠C=90°,O為BC邊上一點(diǎn),以O(shè)C為半徑的圓O,交AB于D點(diǎn),且AD=AC,延長DO交圓O于E點(diǎn),連接AE.求證:DE⊥AB;若DB=4,BC=8,求AE的長.19.(5分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運(yùn)動,并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動,且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).(1)求證:△ABE∽△ECM;(2)探究:在△DEF運(yùn)動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當(dāng)線段AM最短時,求重疊部分的面積.20.(8分)如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,連接AC,求△ACB的面積.21.(10分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)(x<0)的圖象交于點(diǎn)B(﹣2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.22.(10分)2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學(xué)購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學(xué)校規(guī)劃,準(zhǔn)備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請設(shè)計出最省錢的購買方案,并說明理由.23.(12分)問題提出(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點(diǎn),則∠AEB∠ACB(填“>”“<”“=”);問題探究(2)如圖②,在正方形ABCD中,P為CD邊上的一個動點(diǎn),當(dāng)點(diǎn)P位于何處時,∠APB最大?并說明理由;問題解決(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側(cè)面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠(yuǎn)處正對廣告牌走近時,在P處看廣告效果最好(視角最大),請你在圖③中找到點(diǎn)P的位置,并計算此時小剛與大樓AD之間的距離.24.(14分)已知△ABC中,D為AB邊上任意一點(diǎn),DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當(dāng)α=60°時,求證:△DCE是等邊三角形;(2)如圖2所示,當(dāng)α=45°時,求證:=;(3)如圖3所示,當(dāng)α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:根據(jù)合并同類項法則,同底數(shù)冪相除,積的乘方的性質(zhì),同底數(shù)冪相乘的性質(zhì),逐一判斷即可.詳解:根據(jù)合并同類項法則,可知x3+x3=2x3,故不正確;根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相加,可知a6÷a2=a4,故不正確;根據(jù)積的乘方,等于各個因式分別乘方,可知(-3a3)2=9a6,故不正確;根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,可得x2?x﹣3=x﹣1,故正確.故選D.點(diǎn)睛:此題主要考查了整式的相關(guān)運(yùn)算,是一道綜合性題目,熟練應(yīng)用整式的相關(guān)性質(zhì)和運(yùn)算法則是解題關(guān)鍵.2、D【解析】

根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)的應(yīng)用,能熟記特殊角的三角函數(shù)值是解此題的關(guān)鍵,難度適中.3、D【解析】

根據(jù)題意,得到P、Q分別同時到達(dá)D、C可判斷①②,分段討論P(yáng)Q位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點(diǎn)的相對位置判斷點(diǎn)P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點(diǎn)Q到達(dá)C時,點(diǎn)P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當(dāng)14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點(diǎn)連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點(diǎn)P運(yùn)行路徑的交點(diǎn)是P,滿足△ABP是等腰三角形此時,滿足條件的點(diǎn)有4個,故④錯誤.∵△BEA為直角三角形∴只有點(diǎn)P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當(dāng)或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點(diǎn)睛】本題是動點(diǎn)問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.4、A【解析】

通過題意先計算順流行駛的速度為26+2=28千米/時,逆流行駛的速度為:26-2=24千米/時.根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時”,得出等量關(guān)系,據(jù)此列出方程即可.【詳解】解:設(shè)A港和B港相距x千米,可得方程:故選:A.【點(diǎn)睛】本題考查了由實際問題抽象出一元一次方程,抓住關(guān)鍵描述語,找到等量關(guān)系是解決問題的關(guān)鍵.順?biāo)俣?水流速度+靜水速度,逆水速度=靜水速度-水流速度.5、A【解析】∵∠AED=∠B,∠A=∠A

∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.6、C【解析】分析:結(jié)合2個圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點(diǎn)睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.7、D【解析】

解:A、如果a+b=0,那么a=b=0,或a=﹣b,錯誤,為假命題;B、=4的平方根是±2,錯誤,為假命題;C、有公共頂點(diǎn)且相等的兩個角是對頂角,錯誤,為假命題;D、等腰三角形兩底角相等,正確,為真命題;故選D.8、C【解析】

連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點(diǎn)B關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點(diǎn)B關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點(diǎn)睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.9、D【解析】分別利用極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數(shù)是14,故選項A正確,不合題意;極差是:16﹣13=3,故選項B正確,不合題意;中位數(shù)是:14.5,故選項C正確,不合題意;平均數(shù)是:(13+14×5+15×4+16×2)÷12≈14.5,故選項D錯誤,符合題意.故選D.“點(diǎn)睛”此題主要考查了極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.10、D【解析】解:設(shè)動車速度為每小時x千米,則可列方程為:﹣=.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)“某小區(qū)購買了銀杏樹和玉蘭樹共1棵”列出方程即可.【詳解】設(shè)銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)題意,得:1.故答案為:1.【點(diǎn)睛】本題考查了由實際問題抽象出分式方程,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.12、(3,1)【解析】分析:已知拋物線解析式為頂點(diǎn)式,可直接寫出頂點(diǎn)坐標(biāo).詳解:∵y=(x﹣3)2+1為拋物線的頂點(diǎn)式,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,拋物線的頂點(diǎn)坐標(biāo)為(3,1).故答案為(3,1).點(diǎn)睛:主要考查了拋物線頂點(diǎn)式的運(yùn)用.13、3(m-n)2【解析】原式==故填:14、50°【解析】

先根據(jù)平行線的性質(zhì)得出∠DEF的度數(shù),再根據(jù)翻折變換的性質(zhì)得出∠D′EF的度數(shù),根據(jù)平角的定義即可得出結(jié)論.【詳解】∵AD∥BC,∠EFB=65°,

∴∠DEF=65°,

又∵∠DEF=∠D′EF,

∴∠D′EF=65°,

∴∠AED′=50°.【點(diǎn)睛】本題考查翻折變換(折疊問題)和平行線的性質(zhì),解題的關(guān)鍵是掌握翻折變換(折疊問題)和平行線的性質(zhì).15、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.16、【解析】

直接利用完全平方公式分解因式得出答案.【詳解】解:=,故答案為.【點(diǎn)睛】此題主要考查了公式法分解因式,正確應(yīng)用完全平方公式是解題關(guān)鍵.17、1.【解析】

直接利用二次根式的性質(zhì)以及結(jié)合數(shù)軸得出a的取值范圍進(jìn)而化簡即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【點(diǎn)睛】本題主要考查了二次根式的性質(zhì)與化簡,正確得出a的取值范圍是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)6【解析】

(1)連接CD,證明即可得到結(jié)論;(2)設(shè)圓O的半徑為r,在Rt△BDO中,運(yùn)用勾股定理即可求出結(jié)論.【詳解】(1)證明:連接CD,∵∴∵∴.(2)設(shè)圓O的半徑為,,設(shè).【點(diǎn)睛】本題綜合考查了切線的性質(zhì)和判定及勾股定理的綜合運(yùn)用.綜合性比較強(qiáng),對于學(xué)生的能力要求比較高.19、(1)證明見解析;(2)能;BE=1或;(3)【解析】

(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當(dāng)AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當(dāng)AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設(shè)BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當(dāng)x=3時,AM最短為,又∵當(dāng)BE=x=3=BC時,∴點(diǎn)E為BC的中點(diǎn),∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.20、(1)反比例函數(shù)解析式為y=,一次函數(shù)解析式為y=x+2;(2)△ACB的面積為1.【解析】

(1)將點(diǎn)A坐標(biāo)代入y=可得反比例函數(shù)解析式,據(jù)此求得點(diǎn)B坐標(biāo),根據(jù)A、B兩點(diǎn)坐標(biāo)可得直線解析式;(2)根據(jù)點(diǎn)B坐標(biāo)可得底邊BC=2,由A、B兩點(diǎn)的橫坐標(biāo)可得BC邊上的高,據(jù)此可得.【詳解】解:(1)將點(diǎn)A(2,4)代入y=,得:m=8,則反比例函數(shù)解析式為y=,當(dāng)x=﹣4時,y=﹣2,則點(diǎn)B(﹣4,﹣2),將點(diǎn)A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,則一次函數(shù)解析式為y=x+2;(2)由題意知BC=2,則△ACB的面積=×2×1=1.【點(diǎn)睛】本題主要考查一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積求法是解題的關(guān)鍵.21、(1)-6;(2).【解析】

(1)由點(diǎn)B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標(biāo),作DE⊥BC.延長DE交AB于點(diǎn)F,證△DBE≌△FBE得DE=FE=4,即可知點(diǎn)F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點(diǎn)B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點(diǎn)B(﹣2,3)、D(﹣6,1),如圖,過點(diǎn)D作DE⊥BC于點(diǎn)E,延長DE交AB于點(diǎn)F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點(diǎn)F(2,1),將點(diǎn)B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關(guān)鍵是能借助全等三角形確定一些相關(guān)線段的長.22、(1)甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)當(dāng)購買1棵甲種樹、133棵乙種樹時,購買費(fèi)用最低,理由見解析.【解析】

(1)設(shè)甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據(jù)“購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)購買甲種樹a棵,則購買乙種樹(200-a)棵,根據(jù)甲種樹的數(shù)量不少于乙種樹的數(shù)量的可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由甲種樹的單價比乙種樹的單價貴,即可找出最省錢的購買方案.【詳解】解:(1)設(shè)甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據(jù)題意得:

,解得:答:甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)設(shè)購買甲種樹a棵,則購買乙種樹(200﹣a)棵,根據(jù)題意得:解得:∵a為整數(shù),∴a≥1.∵甲種樹的單價比乙種樹的單價貴,∴當(dāng)購買1棵甲種樹、133棵乙種樹時,購買費(fèi)用最低.【點(diǎn)睛】一元一次不等式的應(yīng)用,二元一次方程組的應(yīng)用,讀懂題目,是解題的關(guān)鍵.23、(1)>;(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時,∠APB最大,理由見解析;(3)4米.【解析】

(1)過點(diǎn)E作EF⊥AB于點(diǎn)F,由矩形的性質(zhì)和等腰三角形的判定得到:△AEF是等腰直角三角形,易證∠AEB=90°,而∠ACB<90°,由此可以比較∠AEB與∠ACB的大?。?)假設(shè)P為CD的中點(diǎn),作△APB的外接圓⊙O,則此時CD切⊙O于P,在CD上取任意異于P點(diǎn)的點(diǎn)E,連接AE,與⊙O交于點(diǎn)F,連接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB與∠APB均為⊙O中弧AB所對的角,則∠AFB=∠APB,即可判斷∠APB與∠AEB的大小關(guān)系,即可得點(diǎn)P位于何處時,∠APB最大;(3)過點(diǎn)E作CE∥DF,交AD于點(diǎn)C,作AB的垂直平分線,垂足為點(diǎn)Q,并在垂直平分線上取點(diǎn)O,使OA=CQ,以點(diǎn)O為圓心,OB為半徑作圓,則⊙O切CE于點(diǎn)G,連接OG,并延長交DF于點(diǎn)P,連接OA,再利用勾股定理以及長度關(guān)系即可得解.【詳解】解:(1)∠AEB>∠ACB,理由如下:如圖1,過點(diǎn)E作EF⊥AB于點(diǎn)F,∵在矩形ABCD中,AB=2AD,E為CD中點(diǎn),∴四邊形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案為:>;(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時,∠APB最大,理由如下:假設(shè)P為CD的中點(diǎn),如圖2,作△APB的外接圓⊙O,則此時CD切⊙O于點(diǎn)P,在CD上取任意異于P點(diǎn)的點(diǎn)E,連接AE,與⊙O交于點(diǎn)F,連接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故點(diǎn)P位于CD的中點(diǎn)時,∠APB最大:(3)如圖3,過點(diǎn)E作CE∥DF交AD于點(diǎn)C,作線段AB的垂直平分線,垂足為點(diǎn)Q,并在垂直平分線上取點(diǎn)O,使OA=CQ,以點(diǎn)O為圓心,OA長為半徑作圓,則⊙O切CE于點(diǎn)G,連接OG,并延長交DF于點(diǎn)P,此時點(diǎn)P即為小剛所站的位置,由題意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米,AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小剛與大樓AD之間的距離為4米時看廣告牌效果最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論