2021年高考數(shù)學(xué)真題分類匯編專題04數(shù)列純版含解析優(yōu)選課程網(wǎng)_第1頁(yè)
2021年高考數(shù)學(xué)真題分類匯編專題04數(shù)列純版含解析優(yōu)選課程網(wǎng)_第2頁(yè)
2021年高考數(shù)學(xué)真題分類匯編專題04數(shù)列純版含解析優(yōu)選課程網(wǎng)_第3頁(yè)
2021年高考數(shù)學(xué)真題分類匯編專題04數(shù)列純版含解析優(yōu)選課程網(wǎng)_第4頁(yè)
2021年高考數(shù)學(xué)真題分類匯編專題04數(shù)列純版含解析優(yōu)選課程網(wǎng)_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021年高考數(shù)學(xué)分類匯編專題04:數(shù)記????為等比數(shù)列{????}的前??項(xiàng)和.若??2=4,??4=6,則??6= A. B. C. D.數(shù)列{????}是遞增的整數(shù)數(shù)列,且??1≥3,??1+??2+???+????=100,則??的最大值為 A. B. C. D.

}和

}????(1≤??≤5)

=288,

=96,

=192

則??3= A. B. C. D.已知????∈R????>0??(??)=????2+??(??∈R).若??(???????(????(??+??)面上點(diǎn)(??,??)的軌跡是()A.直線和 B.直線和橢 C.直線和雙曲 D.直線和拋物

}

=1,

=????(??∈N?).記數(shù)列

}n項(xiàng)和為

,則(A.1<

< B.3<

< C.4< <

D.9< <

某校學(xué)生在研究民間剪紙藝術(shù)時(shí),發(fā)現(xiàn)此紙時(shí)經(jīng)常會(huì)沿紙的某條對(duì)稱軸把紙對(duì)折。規(guī)格為20dm×12dm的長(zhǎng)方形紙.對(duì)折1次共可以得到10dm×2dm、20dm×6dm兩種規(guī)格的圖形,它們的面積之和S1=240dm2,對(duì)折2次共可以得5dm×12dm,10dm×6dm,20dm×3dm三種規(guī)格的圖形,它們的面積之和S2=180dm2。以此類推.則對(duì)折4次共可以得到不同規(guī)格圖形的種數(shù) ;如對(duì)折n次,那么 ???? 記????為{????}的前??項(xiàng)和,已知????>0,??2=3??1,且數(shù)列{√????}是等差數(shù)列.證明:已知數(shù)列{an}Sn為{an}n項(xiàng)和,從下面①②③中選取兩個(gè)作為條件,證①數(shù)列{an}是等差數(shù)列:②數(shù)列{√S??}是等差數(shù)列;③a2=3a1Sn為數(shù)列{an}n項(xiàng)和,bn為數(shù)列{Sn}n項(xiàng)積,已知2+

求{an}的通項(xiàng)列

}1的等比數(shù)列,數(shù)列

}滿足

3

,3

,9

(1)求{????}和{????}的通項(xiàng)

}和

}n項(xiàng)和.證明:

<????2

}

=1,

an1,??an2,??(1)記????=??2??,寫出??1,??2,并求數(shù)列{????}的通項(xiàng)(2)求{????}20????0{????}n??3=??5??2??4=??4(1)求數(shù)列{????}的通項(xiàng)????(2)????>????n定義????數(shù)列{????}:對(duì)實(shí)數(shù) ,滿足:①??1+??≥0,??2+??=0;②???∈???,??4???1??4??;③????+??∈{????+????+??,????+????+??+1},??,??∈???42,-2,0,1??2若{????}是??0數(shù)列,求??5是否存在 ,使得存在????數(shù)列{????},對(duì)???∈???,????≥??10?若存在,求出所有這樣

}n項(xiàng)和為

,

=?4

?9(1)求數(shù)列{????}(2){????}3????+(??4)????=0{????}n????????≤????????∈N?恒成立,求??的范圍.{????}2864.{????}0??14,??3???2=48(1)求{????}和{????}的通項(xiàng)

+1,??∈???{??2???}證明

????????+1<2√2(??∈【答案】S2,S4-S2,S6-S4成等比數(shù)列,4,2,S6-6成等比數(shù)列,【答案】{????}∴n要取最大,d盡可能為小的整數(shù),d=1

=(3+??+2)??= n【答案】??????1288

??5=

=

=

=??1+??5=192+64=【答案】

3

【解】因?yàn)??(??????(????(??+??)成等比數(shù)列,所以??(?????)??(??+??)=[??(??)]2,即[??(?????)2+??][??(??+??)2+??]=(????2+??)2,整理得(????2+????2?2??????+??)(????2+????2+2??????+??)=(????2+??)2(????2+????2+??)2?(2??????)2?(????2+??)2=0(2????2+????2+2??)????2?4??2??2??2=0?2??2??2??2+??2??4+2??????2=0所以??2(?2??2??2+??2??2+2????)=所以?2????2+????2+2??=0或??=0所以??2???2=1或??= 其中??2???2=1是雙曲線,??=0是直線 【答案】

=1,

=????(??∈N?),所以

>0,且

13=,32

=1?√2,0<2

<????由

=

=1+

=(

1

+) ∴1<( 1

<1+

,

?1<

0<

<

+

≤1+???1=

,當(dāng)且僅當(dāng)??=1時(shí)取等號(hào),∴

≥(

∴??≥

????≤????=??+1

1+

??+3∴????+1≤

,∴????+1·

·?????1·?????1····??3·??2≤??+1·

·???1·

···3·

5????+1≤ ,所以??

=6(

?1),所以

≤6(

?1+1?

+···? 1? 1=2

?

)<6×1=21<

<3 1 ,先得到??100>1

,進(jìn)一步推導(dǎo)出

?1<

出??1003。5;72024032.5×12,6×5,3×10,20×1.5441.25×12,2.5×6,3×5,1.5×10,20×0.755n次有n+1中類型

=240(??+

1

因此∑????=240·(1+2 ??

2??),2∑????=240·(22+23+?+

+3∑????=240·(1++3

1+?+

??+1)=240(3

))2

則∑????=2403

2??)=720?240

故答案為:5,720240·{√????}??=√??2??1√??2??1√??1∴√????=√??1+(???1)√??1=??√??1,(??∈∴????=??1??2,(??∈∴當(dāng)??≥2時(shí),????=??????????1=??1??2???1(???1)2=2??1???當(dāng)??=12??1×1??1=??1????=2??1????1∴{????}的通項(xiàng)為????=2??1?????1,(??∈∴??????????1=(2??1?????1)?[2??1(???1)?{????}是等差數(shù)列設(shè)√????=??????(??>0),則????=(????+??)2,當(dāng)??=1時(shí),??1=??1=(??+??)2;當(dāng)??≥2????=?????????1=(??????)2?(??????+??)2=??(2???????+2??);因?yàn)閧????}也是等差數(shù)列,所以(??+??)2=??(2?????+2??),解得??=0;所以????=??2(2???1),所以??2=3??1??2=3??1,{????}是等差數(shù)列,所以公差??=??2???1=2??1,

+??(???1)??=

,即

=√????

因?yàn)椤????+1?√????=√??1(??+1)?√??1??=√??1,所以{√????}是等差數(shù)列.設(shè)√????=??????(??>0),則????=(????+??)2,當(dāng)??=1時(shí),??1=??1=(??+??)2;當(dāng)??≥2????=?????????1=(??????)2?(??????+??)2=??(2???????+2??)

=

??(3??+2??)=3(??+??)2??=0或??=?4??3當(dāng)??=0??1=??2????=??2(2??1),當(dāng)??≥2時(shí),????-????-1=2??2滿足等差數(shù)列的定義,此時(shí){????}為等差數(shù)列;當(dāng)??=?4??時(shí),

=??????=????4??√??=???<0不合題意,舍去

綜上可知{????}為等差數(shù)列(1)由已知

+

=2,則

?

+

=2?2bn-1+2=2bn?bn-bn-1=2

(n≥2),b1=2故{bn}2

2

(2)由(1)bn=2

+(n-1)2

=??+2

,則

=2?Sn=n=1時(shí),a1=S1=2n≥2時(shí),an=Sn-Sn-1=

-

= an=

3,??=2

,??≥(1){????}1??1,3??29??3成等差數(shù)列,所以6??2=??1+9??3,所以6??1??=??1+9??1??2,即9??2?6??+1=0??=3

1=(=(

=??????=??

1×(1?11= 3??13

3(12

3??)1 1????=3+32+?+3???1+3??

=1+2+?+???1+ 3

2

1

1(1?1

?

=3+

+

+?

?

1= 3??13

=(12

3??)

,=(1 ),

2

?????=3(1?1)?

1)=?

<0

<????2

23???4(1?

2(1)2??則??2??+1=??2??+2,??2??+2=??2??+1+1∴??2??+2=??2??3????+1=????3??1=??2=??1+1=2∴{????}2為首項(xiàng),3∴??1=2,??2=5,????=3???1(2)當(dāng)??????=????+11∴{????}的前20??1+??2+?+=(??1+??3+?+??19)+(??2+??4+?+=[(??2?1)+(??4?1)+?+(??20?1)]+(??2+??4+?+=2(??2+??4??2010.

+

+?+

=

+

+?+

=2×10+10×9× =1552∴{????}202×155?10=300(1)??5=5??3??3=5??3??3=0,設(shè)等差數(shù)列的公差為??,從而有:??2??4=(??3???)(??3+??)=???2,??4=??1+??2??3??4=(??32????3????3??3??)=?2??,從而:???2=?2??,由于公差不為零,故:??=2,數(shù)列的通項(xiàng)為:????=??3+(???3)??=2???6由數(shù)列的通項(xiàng)可得:

=2?6=?4,則:

=??×(?4)+??(???1)×2=??2?6??2????>??????2?5??>2??6(??1)(??6)>0,解得:??<1或??>6,又??為正整數(shù),故??7.(1)0=??3∈{??1+??22??1??22+1}={2,3},4項(xiàng)2,?2,0,1的數(shù)列,不可能是??2數(shù)列.(2)??1≥0??2=0????+2∈{????????1}??3=??1或??3=??11??4=0或??4=1,若??4=0,由性質(zhì)②可知??3<??4,即??1<0或??1+1<0,;若??4=1,??3=??1+1,由??3<??4有??1+1<1,1因此只能是??4=1??3=??11

=

+

=

+

+1??1=

=0若??=1

= ∈{??+??+0,??+??+0+1}={2??,

+1}={1,2}

??2=0,舍去當(dāng)??1=0{????}前四項(xiàng)為??4??+??=??(??=1,2,3)??4??+4=??+1(??∈??)??=0??≤??(??≥0)時(shí)命題成立,當(dāng)??=??+1時(shí):若??=1,則??4(??+1)+1=??4??+5=????+(4??+5???){??????4??+5?????∈??1??≤4??4????1}??4??+5??1;??4??+5=????=0??5=0,而由性質(zhì)②可得:??5=??1+??4∈{1,2},與??5=0{??????4??+6???∣??∈??1≤??≤4??5}={????1}??4??+6=??1{??????4??+8???∣??∈??2≤??≤4??6}={??1??2}??4??+8=??2{??????4??+7???∣??∈??1≤??≤4??6}={??1}??4??+7??4??+8??4??+7=????=??+1時(shí)命題成立,證畢??1=0??5=??4×1+1=1????=?????????,??∈???,????+??=????+??+??∈ {????+??+????+??,????+??+????+??+1} ={????+????,????+????+1},??1=??1+??≥0??2=??2+??=0??4???1=??4???1??<??4????=??4??,因此數(shù)列{????}為??0數(shù)列.由(2)可知若???∈????4??+??=?????(??=1,2,3??4??+4=??+1?????11??10=??11=??4×2+3=2??≥0??9???10=???10=???4×2+2=?(2??)≥0,因此??=2,此時(shí)??1??2??10≤0,????≥0(??≥11),滿足題意.(1)??=14(??1??2)=3??19 4??2=4?9=?4,∴??2=?16??≥24????+1=3????94????=3?????1?9?4????+1=??=?27≠0,∴??≠0,∴????+1=3

又 又=,∴{??}是首項(xiàng)為 ,公比

3

34∴????=?4?(4

=?3?(4(2)

+(???

=0,得

=?

3??

3????=(???4)(4 4??=?3×3?2×()2?1×()3+0×()4???4)?()?? 3??=?3×3??=?3× 2×(3×4???5)?(?4)?(444444

+?+

)+

3 3 3

3

344????=?3×4+(4

+(4

+(4

+?(4

?(???4)?(4 [1?( =?+ ?(???4)()??+1 4 3

3

3=?

?4(4

?(???4)?

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論