版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Section5.5ApplicationsofDefiniteIntegralsMethodofelementsforsettingupintegralrepresentationsWhatkindofquantitiescanbecalculatedbydefiniteintegrals?Howcanwesetuptheintegralrepresentations?2QuestionsManyquantitieswewanttoknowinscienceandtechnologycanbecalculatedbydefiniteintegrals.Methodofelementsforsettingupintegralrepresentations3Wehadseenthattheareaoftrapezoidwithcurvedtop,themassofastickandthedisplacementofamovementalongastraightlinecanallbeexpressedbydefiniteintegrals.Theybothhavethefollowingproperties.1)Theyarealldistributednon-uniformlybutcontinuouslyonaninterval[a,b]2)Thesequantitiesarealladditive,thatis,thetotalquantityontheinterval[a,b]equalsthesumofallthoselocalquantitiesdistributedonthesubintervalsof[a,b].Ingeneral,aquantitywiththesetwocharacteristicsmaybecalculatedbyadefiniteintegral.Methodofelementsforsettingupintegralrepresentations4Inordertocalculatethewholearea,wewillfirstfindtheapproximatevalueofeverylocalarea.Todothis,weneedtwosteps:(1)“partition”Divide[a,b]intomanyverysmallsubintervals;(2)“homogenization”Regardthelocalareadistributedoneachsmallinterval[x,x+Δx]asarectanglewithheightf(x).Usingmultiplicationfortheuniformdistribution,wehaveMethodofelementsforsettingupintegralrepresentations5Afterwefoundtheapproximationvalueofeverylocalarea,wecaneasilyobtaintheprecisevalueofthewholeareaAbytheothertwosteps:(3)“summation”(4)“precision”Becausethefunction
f(x)iscontinuouson[a,b],thelimitofthesumisjustthedefiniteintegral.Methodofelementsforsettingupintegralrepresentations6Sothelocalarea
isjusttheincrementofthisfunction.SinceBythegeometricmeaningofthedefiniteintegralwithvaryingupperlimit,weknownthattheareaofthedefiniteintegralwiththecurve
y=f(x)andontheInterval[a,x]isexpressedby,namelytheapproximatevalueofthelocalarea,isactuallythedifferentialofthefunction(1).Methodofelementsforsettingupintegralrepresentations7Ingeneral,theproceduresmaybesimplifiedintothefollowingtwosteps:(1)FindtheelementFindtheapproximatevalueofthelocalrequiredquantity,dQ,onthesubinterval(2)SetuptheintegrationForthedifferential,writedownthecorrespondingdefiniteintegralovertheinterval,weobtainInfinitesimalelementoftheintegralorelementoftheintegralTheproceduresummarizedbytheabovetwostepsiscalledtheelementmethodofintegration.TheAreaofaPlaneRegion8ExampleFindtheareaAoftheregionenclosedbytheparabolasandSolutionFromthesystemwecaneasilyobtaintheabscissaeoftheintersectionsofthetwoparabolas,ItiseasytoseethattheareaAisdistributedcontinuouslybutnon-uniformontheinterval[-2,2],andisadditive.TheAreaofaPlaneRegion9Solution(continued)Bythemethodofelement,wecalculateA
bytwosteps:(1)FindtheelementPartitiontheinterval[-2,2]andconsiderthesubinterval[x,x+dx].Onthissubinterval,theareadistributednon-uniformlymayberegardedapproximatelyasuniform,thatisarectanglewithheightExampleFindtheareaAoftheregionenclosedbytheparabolasandTheAreaofaPlaneRegion10Solution(continued)Thus,weobtaintheelementofarea:ExampleFindtheareaAoftheregionenclosedbytheparabolasand(1)Findtheelement(2)SetuptheintegralTheAreaofaPlaneRegion11Solution(continued)overtheinterval[-2,2].ThewholeareaAisjusttheintegraloftheelementSoFinish.ExampleFindtheareaAoftheregionenclosedbytheparabolasandTheAreaofaPlaneRegion12ExampleFindtheareaAoftheregionenclosedbytheparabolaandthestraightlinesSolutionThisareaAmayberegardedasaquantitywhichisdistributednon-uniformlyontheinterval[0,1]onthey-axis.Tofindtheelementofthearea,partitiontheinterval[0,1],andconsiderthesubinterval,regardingastheareaofarectanglewithwidthTheAreaofaPlaneRegion13Solution(continued)Hence,thetotalareaisThentheelementoftheareaisFinish.ExampleFindtheareaAoftheregionenclosedbytheparabolaandthestraightlinesTheAreaofaPlaneRegion14ExampleFindtheareaAoftheregionenclosedbythecardioidSolutionBythesymmetryofthegraphofthecardioid,itisenoughtocalculatethearealocatedintheupperhalf-plane.Sincetheequationofthecardioidisexpressedinpolarcoordinates,theareamayberegardedasadistributionontheinterval[0,π]andthedistributionisnon-uniform.TheAreaofaPlaneRegion15Solution(continued)Tocalculatethearea,wepartitiontheinterval[0,π]andconsiderthesubintervalOnthisinterval,weregardasAconstant.ThustheelementofareaisExampleFindtheareaAoftheregionenclosedbythecardioidTheAreaofaPlaneRegion16Solution(continued)Thus,thetotalareaisFinish.ExampleFindtheareaAoftheregionenclosedbythecardioidTheAreaofaPlaneRegion17yxOExampleFindtheareaAoftheregionenclosedbythecurveandthex-axis.Solution18TheArcLengthofaPlaneCurveTostudymotionalongaspacecurve,weneedtohavea
measurablelengthalongthecurve.xyOM0Mba19TheArcLengthofaPlaneCurvexyOMi-1Mi(1)Findtheelementofthearclength20TheArcLengthofaPlaneCurve(2)SetuptheintegrationxyOMi-1Mi21TheArcLengthofaPlaneCurveArcLengthforasmoothcurveinthecaseoftherectangularcoordinates1)IftheequationoftheplanecurveΓis
thenthelengthofthearcΓis
2)IftheequationoftheplanecurveΓis
thenthelengthofthearcΓis
TheArcLengthofaPlaneCurve22ExampleFindthearclengthoftheplanecurve23TheArcLengthofaPlaneCurveExample
Findthelengthofanarcoftheplanecurve24TheArcLengthofaPlaneCurveArcLengthforaSmoothCurveinthecaseoftheparametricform
IftheequationoftheplanecurveΓis
thenthelengthofthearcΓis
whereφ(t)andψ(t)arecontinuouslyderivable,and(φ`(t),ψ`(t))≠0,25ExampleFindthelengthofanarcofthecycloidTheArcLengthofaPlaneCurve26TheArcLengthofaPlaneCurveArcLengthforaSmoothCurveinthecaseofthepolarcoordinatesIfΓisexpressedinpolarcoordinates,thenthelengthofthearcΓis
27TheArcLengthofaPlaneCurveExampleFindthelengthofanarcoftheplanecurveTheVolumeofaSolid28ExampleConsiderasolidliketheoneshowninthefollowingfigure.Ateachthecrosssectionofthesolidisaregionwhoseareaisaknowncontinuousfunction.Expressthevolumeofthissolidbyanintegration.SolutionWepartition[a,b]sothatthesolidcanbecutintomanyslicesbyperpendicularplanesthroughthePointsofthepartition.Considertheslicecorrespondingtothesubinterval.Wehavetheelementofvolume(1)Findtheelementofthevolume.TheVolumeofaSolid29Solution(continued)Bythemethodofelementsweobtainthevolumeofthegivensolidasfollows(2)Setuptheintegration.ExampleConsiderasolidliketheoneshowninthefollowingfigure.Ateachthecrosssectionofthesolidisaregionwhoseareaisaknowncontinuousfunction.Expressthevolumeofthissolidbyanintegration.TheVolumeofaSolid30HowtoFindVolumesbytheMethodofSlicingStep1.Sketchthesolidandatypicalcrosssection.Step2.FindaformulaforA(x).Step3.Findthelimitsofintegration.Step4.IntegrateA(x)tofindthevolume.TheVolumeofaSolid31ExampleAcurvedwedgeiscutfromacylinderofradius3bytwoplanes.Oneplaneisperpendiculartotheaxisofthecylinder.Thesecondplanecrossesthefirstplaneata45oangleatthecenterofthecylinder.Findthevolumeofthewedge.SolutionWedrawthewedgeandsketchatypicalcrosssectionperpendiculartothex-axis.Thecrosssectionatxisarectangleofarea(1)Asketch.(2)TheformulaforA(x).TheVolumeofaSolid32Solution(continued)(4)Integratetofindthevolume.Therectanglesrunfromto(3)Thelimitsofintegration.Finish.ExampleAcurvedwedgeiscutfromacylinderofradius3bytwoplanes.Oneplaneisperpendiculartotheaxisofthecylinder.Thesecondplanecrossesthefirstplaneata45oangleatthecenterofthecylinder.Findthevolumeofthewedge.TheVolumeofaSolid33Themostcommonapplicationofthemethodofslicingistosolidsofrevolution[旋轉(zhuǎn)體].SolidsofrevolutionaresolidswhoseshapescanbegeneratedbyrevolvingplaneRegionsaboutaxes.TheonlythingthatchangeswhenthecrosssectionsarecircularistheformulafortheareaA(x).TheVolumeofaSolid34ThetypicalcrosssectionofthesolidperpendiculartotheaxisofrevolutionisadiskofradiusR(x)andareaForthisreason,themethodisoftencalledthediskmethod.TheVolumeofaSolid35ExampleTheregionbetweenthecurve,andthex-axisisrevolvedaboutthex-axistogenerateasolid.Finditsvolume.TheVolumeofaSolid36SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleTheregionbetweenthecurve,andthex-axisisrevolvedaboutthex-axistogenerateasolid.Finditsvolume.TheVolumeofaSolid37ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionboundedbyandthelines,abouttheline.TheVolumeofaSolid38SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionboundedbyandthelines,abouttheline.TheVolumeofaSolid39HowtoFindVolumesforCircularCrossSections(DiskMethod)Step1.DrawtheregionandidentifytheradiusfunctionR(x).Step2.SquareR(x)andmultiplybyπ.Step3.Integratetofindthevolume.TheVolumeofaSolid40ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionbetweenthey-axisandthecurve,,aboutthey-axis.TheVolumeofaSolid41SolutionWedrawfiguresshowingtheregion,atypicalradius,andthegeneratedsolid.ThevolumeisFinish.ExampleFindthevolumeofthesolidgeneratedbyrevolvingaregionbetweenthey-axisandthecurve,,aboutthey-axis.TheVolumeofaSolid42Iftheregionwerevolvetogenerateasoliddoesnotborderonorcrosstheaxisofrevolution,thesolidhasaholeinit.Thecrosssectionsperpendiculartotheaxisofrevolutionarewashersinsteadofdisks.ThedimensionsofatypicalwasherareOuterradius:Innerradius:Thewasher’sareaisTheVolumeofaSolid43HowtoFindVolumesforWasherCrossSectionsStep1.Drawtheregionandsketchalinesegmentacrossitperpendiculartotheaxisofrevolution.Whentheregionisrevolved,thissegmentwillgenerateatypicalwashercrosssectionofthegeneratesolid.Step2.Findthelimitsofintegration.
Step3.Findtheouterandinnerradiiofthewashersweptoutbythelinesegment.Step4.Integratetofindthevolume.TheVolumeofaSolid44ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.Solution
Step1.Drawtheregionandsketchalinesegmentacrossitperpendiculartotheaxisofrevolution.TheVolumeofaSolid45Solution(continued)
Step2.Findthelimitsofintegrationbyfindingthex-coordinatesoftheintersectionpointsofthecurveandthelineinrightfigure.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.TheVolumeofaSolid46Solution(continued)
Outerradius:Innerradius:Step3.Findtheouterandinnerradiiofthewasherthatwouldbesweptoutbythelinesegmentifitwererevolvedaboutthex-axisalongwiththeregion.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.TheVolumeofaSolid47Solution(continued)Step4.Evaluatethevolumeintegral.Finish.ExampleTheregionboundedbythecurveandthelineisrevolvedaboutthex-axistogenerateasolid.Findthevolumeofthesolid.Theapplicationsofthedefiniteintegralinphysics48PumpingLiquidsfromContainersHowmuchworkdoesittaketopumpallorpartoftheliquidfromacontainer?Tofindout,weimagineliftingtheliquidoutonethinhorizontalslabatatimeandapplyingtheequationW=Fdtoeachslab,whereFistheforceanddisthedistanceoftheobjectalongwiththedirectionofF.Wethenevaluatetheintegralthisleadtoastheslabsbecomethinnerandmorenumerous.Theintegralwegeteachtimedependsontheweightoftheliquidandthedimensionsofthecontainer,butthewaywefindtheintegralisalwaysthesame.Theapplicationsofthedefiniteintegralinphysics49ExampleHowmuchworkdoesittaketopumpthewaterfromafulluprightcircularcylindricaltankofradius5mandheight10mtoalevelof4mabovethetopofthetank?SolutionWedrawthetankasrightfigure,addcoordinateaxes,andi
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 移動(dòng)端安全教育軟件的現(xiàn)狀與發(fā)展趨勢(shì)分析
- 漯河2024年河南漯河市總工會(huì)所屬事業(yè)單位招聘1人筆試歷年參考題庫(kù)附帶答案詳解
- 提升學(xué)術(shù)會(huì)議匯報(bào)的互動(dòng)性技巧
- 二零二五年度橙子有機(jī)認(rèn)證服務(wù)合同3篇
- 教育類(lèi)展會(huì)的多媒體教育體驗(yàn)設(shè)計(jì)
- 瀘州四川瀘州市兒童福利院招聘編外工作人員筆試歷年參考題庫(kù)附帶答案詳解
- 二零二五年度船只租賃與水上旅游產(chǎn)品開(kāi)發(fā)合同2篇
- 2025年滬教新版選擇性必修1語(yǔ)文下冊(cè)月考試卷含答案
- 2025年個(gè)人獨(dú)資企業(yè)資產(chǎn)轉(zhuǎn)讓與品牌授權(quán)合同2篇
- 2025年外研銜接版五年級(jí)語(yǔ)文下冊(cè)月考試卷
- 繪本《圖書(shū)館獅子》原文
- 安全使用公共WiFi網(wǎng)絡(luò)的方法
- 2023年管理學(xué)原理考試題庫(kù)附答案
- 【可行性報(bào)告】2023年電動(dòng)自行車(chē)相關(guān)項(xiàng)目可行性研究報(bào)告
- 歐洲食品與飲料行業(yè)數(shù)據(jù)與趨勢(shì)
- 放療科室規(guī)章制度(二篇)
- 中高職貫通培養(yǎng)三二分段(中職階段)新能源汽車(chē)檢測(cè)與維修專(zhuān)業(yè)課程體系
- 浙江省安全員C證考試題庫(kù)及答案(推薦)
- 目視講義.的知識(shí)
- 房地產(chǎn)公司流動(dòng)資產(chǎn)管理制度
- 鋁合金門(mén)窗設(shè)計(jì)說(shuō)明
評(píng)論
0/150
提交評(píng)論