2016級(jí)復(fù)變函數(shù)教學(xué)大綱_第1頁(yè)
2016級(jí)復(fù)變函數(shù)教學(xué)大綱_第2頁(yè)
2016級(jí)復(fù)變函數(shù)教學(xué)大綱_第3頁(yè)
2016級(jí)復(fù)變函數(shù)教學(xué)大綱_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

FunctionsofaComplex總學(xué)時(shí):64上機(jī)學(xué)時(shí):0實(shí)驗(yàn)學(xué)時(shí):04畢業(yè)要求(專業(yè)課程培養(yǎng)學(xué)生的教學(xué)內(nèi)容與學(xué)時(shí)(一)復(fù)數(shù)及復(fù)平 4學(xué) 2學(xué) 2學(xué)程表示的幾何圖形掌握復(fù)數(shù)的乘冪與理解平面曲線,光滑曲線與平面區(qū)(二)復(fù)變函 8學(xué) 4學(xué) 4學(xué)C-RC-R及簡(jiǎn)單映射性質(zhì)。掌握歐拉和復(fù)數(shù)的指數(shù)表示(三)復(fù)變函數(shù)的積 12學(xué) 8學(xué)柯西4學(xué)西積分定理和柯西積分。掌握柯西不等式、定理、莫勒拉定理。(四)級(jí) 16學(xué) 2學(xué) 6學(xué) 8學(xué)的求法。掌握泰勒級(jí)數(shù)的定義及常見(jiàn)函數(shù)的泰勒展開(kāi)式。掌握洛朗級(jí)數(shù)的定(五)留 12學(xué) 4學(xué) 8學(xué)(六)保形映 12學(xué) 4學(xué) 4學(xué) 4學(xué)實(shí)驗(yàn)教學(xué)(包括上機(jī)學(xué)時(shí)、實(shí)驗(yàn)無(wú)現(xiàn)用:余家榮.復(fù)變函數(shù)[M].:高等教育方企勤.復(fù)變函數(shù)[M].:鐘玉泉.復(fù)變函數(shù)論[M].:高等教育制定人及制定時(shí)間,2017220“FunctionsofaComplexVariable”CourseCourseFunctionsofaComplexCourseDisciplinaryBasicCourseCompulsoryClass4SchoolofProgramMathematicsandApplied Withasolidmathematicalfoundationandtheabilityofrigorouslogicalthinkingandreasoning.Masteringthebasictheoryofmathematicsandmethods,withtheabilitytousetheknowledgeofmathematicsandcomputerstosolveproblems.SubjecttopreliminarytraininginscientificByteachingthiscoursetoenablestudentstograspandunderstandsomebasicconcepts,basictheoriesandbasicmethodsofyticfunctiontheory,tocultivatethebasicskillsofapplyingtheseconceptsandmethodstosolvepracticalproblems,andtoprovidethenecessarymathematicalbasisforthestudyfollow-upCourseThiscourseisabasiccourseofmathematics,includingthebasictheory:complexnumbers,yticfunctions,differential,integral,series,residueandconformalmapofyticfunctions,andthebasicoperation:complexintegral,thepowerseriesexpansionofyticfunctions,classificationofapplicationoftheresiduetheorem,conformalmapofsimpleTeachingContentand (I)Complexnumberandcomplex 4ClassComplexnumberanditsgeometric 2ClassTopologyofthecomplexne 2ClassHoursMastertheconceptofcomplexnumbers,theirsrepresentationsandoperations.Understandthegeometricmeaningofarithmeticoperationsofcomplexnumbersandthegeometricalrepresentationofcomplexequation.Masterthepowerandtherootsofacomplexnumber.Understandthenecurve,smoothcurveneregion.Understandthedefinitionofcomplexfunctionofavariable,masterthelimitandcontinuityofcomplexFunctionsofacomplex 8Classytic 4ClassElementary 4ClassUnderstandingthederivabilityandthedifferentiabilityandclarifytherelationshipbetweenthetwoconcepts.MastertheC-Rconditionanduseittodeterminethedifferentiabilityofcomplexfunctions.Masterthebasicrulesofdifferentiation.Masterthedefinition,basicpropertiesandbasicmappropertiesoftheexponentialfunction,powerfunction,trigonometricfunction.MasterEulerformulaandexponentialrepresentationofcomplexnumbers.(III)Complex 12ClassCauchy's 8ClassCauchy'sintegralformula 4ClassHoursMasterthedefinition,basicpropertiesandcalculationmethodsoftheintegrationofacomplexfunctionalongapiecewisesmoothcurve.MasteringCauchyintegraltheoremandCauchyintegralformula.MasterCauchyinequality,Liouville'stheorem,Morera'stheorem.(IV) 16ClassThebasicpropertiesoftheseriesand 2ClassTheTaylor 6ClassTheLaurent 8ClassUnderstandtheconceptofthelimitofasequenceofcomplexnumbers,theconceptofseriesofcomplexfunctions.Mastertheconcept,thepropertiesandtheconvergenceradiusofthepowerseries.MasterthedefinitionoftheTaylorseriesandtheTaylorexpansionofcommonfunctions.MasterthedefinitionofLaurentseriesandtheLaurentexpansionofsomeyticfunctionsinanannulus.Masterthedefinitionandclassificationofisolatedsingularities.(V) 12ClassGeneral 4ClassApplicationofresiduecalculation 8ClassHoursMasterthedefinitionandcalculationmethodofresidues.Mastertheresiduetheoremanditsapplications.(VI)Conformal 12ClassHoursMappropertiesofunivalentytic 4ClassFractionallinearfunctionanditsmap 4ClassTheRiemannmap 4ClassUnderstandthegeometricmeaningofthederivativeofyticfunctionsandtheconceptofconformalmap;mastertheconceptoflinearfractionaltransformationanditsproperties;mastertheummodulusprinciple,Schwarzlemma,Riemannmaptheorem;mastertheconformalmapbetweensomesimpleClassroom ,comprehensiveExaminationandclassroomperformance:Finalexamination: andReferenceBooksTeachingMaterials:Ji

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論