




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省監(jiān)利一中2023屆全國高考大聯(lián)考信息卷:數(shù)學試題試卷(3)請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.32.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且3.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.4.已知集合,集合,則A. B.或C. D.5.已知正項等比數(shù)列的前項和為,且,則公比的值為()A. B.或 C. D.6.已知向量,,若,則()A. B. C.-8 D.87.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.28.在展開式中的常數(shù)項為A.1 B.2 C.3 D.79.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.10.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.11.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.12.甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是__________.14.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.15.中,角的對邊分別為,且成等差數(shù)列,若,,則的面積為__________.16.已知拋物線的焦點為,過點且斜率為1的直線交拋物線于兩點,,若線段的垂直平分線與軸交點的橫坐標為,則的值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數(shù)學期望.18.(12分)設等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設,,請計算,,;(2)設,,試求,的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設,,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.19.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.20.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.21.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.22.(10分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數(shù),綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數(shù),設(a),則(a)由導數(shù)的應用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學思想方法,屬難度較大的題型.2、B【解析】由且可得,故選B.3、B【解析】
先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.4、C【解析】
由可得,解得或,所以或,又,所以,故選C.5、C【解析】
由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數(shù)列,故,所以,故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.6、B【解析】
先求出向量,的坐標,然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎(chǔ)題.7、C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.8、D【解析】
求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎(chǔ)題。9、B【解析】
求得的導函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設,要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.10、A【解析】
列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.11、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.12、B【解析】
將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.14、【解析】
依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.15、.【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應用,屬于基礎(chǔ)題.16、1【解析】
設,寫出直線方程代入拋物線方程后應用韋達定理求得,由拋物線定義得焦點弦長,求得,再寫出的垂直平分線方程,得,從而可得結(jié)論.【詳解】拋物線的焦點坐標為,直線的方程為,據(jù)得.設,則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點睛】本題考查拋物線的焦點弦問題,根據(jù)拋物線的定義表示出焦點弦長是解題關(guān)鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)分布列見解析,期望為20【解析】
利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數(shù)學期望公式求解即可.【詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學期望.【點睛】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數(shù)學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應的概率是求解本題的關(guān)鍵;屬于中檔題、??碱}型.18、(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關(guān)于7的余數(shù)可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關(guān)于7的余數(shù)相同,不妨設為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負整數(shù),設,則,且,,,,所以,當,時,對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因為,,所以且是7的倍數(shù),因為,,所以,所以矛盾,即假設不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因為,,,,所以.【點睛】本題考查數(shù)列的綜合應用,以及反證法,求最值,屬于難題.19、(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設,利用求二階導數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調(diào)遞增,所以在恒成立,即在恒成立,當時,上式成立,當,有,需,而,,,,故綜上,實數(shù)的取值范圍是(2)設,,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當即時,,不符合;當即時,,符合當即時,根據(jù)零點存在定理,,使,有時,,在單調(diào)遞減,時,,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實數(shù)的最小值為【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查利用導數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于難題.20、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.21、(1)(2)【解析】
分析:(1)利用正弦定理以及誘導公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點,則,在中,,(注:也可將兩邊平方)即,,所以,當且僅當時取等號.此時,其最大值為.點睛:該題考查的是有關(guān)三角形的問題,涉及到的知識點有正弦定理,誘導公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關(guān)的公式進行運算即可求得結(jié)果.22、(1)極小值為,極大值為.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 好餓的小蛇操作課
- 阿壩職業(yè)學院《健身理論與指導》2023-2024學年第二學期期末試卷
- 2025年幼兒教育教學方案
- 陜西學前師范學院《醫(yī)學細胞生物學A》2023-2024學年第二學期期末試卷
- 陜西省商洛市2025年高三下學期第二次模擬考試物理試題(2020吉林二模)含解析
- 陜西省延安市洛川縣市級名校2025屆初三5月聯(lián)考化學試題試卷含解析
- 防震減災館建設
- 病死動物無害化處理規(guī)程培訓
- 公共安全與應急管理科學技術(shù)-幻燈片1
- 陜西省西安市西電附中2025年高考第一次模擬考試生物試題含解析
- 旅游概論(劉偉主編)(全國高職高專旅游類“十二五”示范教材) 全套課件(上)
- 19J102-1 19G613混凝土小型空心砌塊墻體建筑與結(jié)構(gòu)構(gòu)造
- 2024屆高考二輪復習備考 有機化學基礎(chǔ) 課件(共35張)
- 貴州省情知識考試總題庫(含答案)
- 女職工權(quán)益保護
- 抽水蓄能電站工程巖錨梁砼施工監(jiān)理控制措施
- 2022版義務教育(道德與法治)課程標準(附課標解讀)
- 儀容儀表禮節(jié)禮貌培訓(定)
- 2023年衢州市屬事業(yè)單位選調(diào)考試真題及答案
- 新生兒口腔行為運動干預
- 拓展天然氣在中國的利用
評論
0/150
提交評論