重慶市巫溪縣重點達標名校2023屆中考適應性考試數學試題含解析_第1頁
重慶市巫溪縣重點達標名校2023屆中考適應性考試數學試題含解析_第2頁
重慶市巫溪縣重點達標名校2023屆中考適應性考試數學試題含解析_第3頁
重慶市巫溪縣重點達標名校2023屆中考適應性考試數學試題含解析_第4頁
重慶市巫溪縣重點達標名校2023屆中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若一次函數的圖像過第一、三、四象限,則函數()A.有最大值 B.有最大值 C.有最小值 D.有最小值2.計算-3-1的結果是()A.2B.-2C.4D.-43.如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉180°,得到△BP2C;把△BP2C繞點C順時針旋轉180°,得到△CP3D,依此類推,則旋轉第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)4.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山5.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=6.如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數關系的圖象大致為()A. B.C. D.7.如圖,扇形AOB中,OA=2,C為弧AB上的一點,連接AC,BC,如果四邊形AOBC為菱形,則圖中陰影部分的面積為()A. B. C. D.8.《九章算術》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數分別表示未知數x,y的系數與相應的常數項.把圖1表示的算籌圖用我們現在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.9.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時10.計算的結果等于()A.-5 B.5 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內部五個小直角三角形的周長為_____.12.近年來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為進一步普及環(huán)保和健康知識,我市某校舉行了“建設宜居成都,關注環(huán)境保護”的知識競賽,某班的學生成績統計如下:成績(分)60708090100人數4812115則該辦學生成績的眾數和中位數分別是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分13.如圖,已知點A(2,2)在雙曲線上,將線段OA沿x軸正方向平移,若平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,則平移距離OO'長為____.14.在函數y=x-1的表達式中,自變量x的取值范圍是.15.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點A落到邊BC上的點A′處,折痕分別交邊AB、AC于點E,點F,如果A′F∥AB,那么BE=_____.16.一個多邊形,除了一個內角外,其余各角的和為2750°,則這一內角為_____度.三、解答題(共8題,共72分)17.(8分)如圖,已知△ABC中,AB=BC=5,tan∠ABC=.求邊AC的長;設邊BC的垂直平分線與邊AB的交點為D,求的值.18.(8分)為進一步深化基教育課程改革,構建符合素質教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.學生小紅計劃選修兩門課程,請寫出所有可能的選法;若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?19.(8分)有一水果店,從批發(fā)市場按4元/千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質,平均每天有50千克變質丟棄,且每存放一天需要各種費用300元,據預測,每天每千克價格上漲0.1元.設x天后每千克蘋果的價格為p元,寫出p與x的函數關系式;若存放x天后將蘋果一次性售出,設銷售總金額為y元,求出y與x的函數關系式;該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?20.(8分)某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據調查結果繪制成如下的不完整的扇形統計圖和條形統計圖:(1)在這次調查中,喜歡籃球項目的同學有______人,在扇形統計圖中,“乒乓球”的百分比為______%,如果學校有800名學生,估計全校學生中有______人喜歡籃球項目.(2)請將條形統計圖補充完整.(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現要從中隨機抽取2名同學代表班級參加校籃球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.21.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.22.(10分)(2016湖南省株洲市)某市對初二綜合素質測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?(2)某同學測試成績?yōu)?0分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?23.(12分)嘉興市2010~2014年社會消費品零售總額及增速統計圖如下:請根據圖中信息,解答下列問題:(1)求嘉興市2010~2014年社會消費品零售總額增速這組數據的中位數.(2)求嘉興市近三年(2012~2014年)的社會消費品零售總額這組數據的平均數.(3)用適當的方法預測嘉興市2015年社會消費品零售總額(只要求列出算式,不必計算出結果).24.在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現的結果;小黃和小石做游戲,制定了兩個游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點數是黑桃牌點數的整數倍時,小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

解:∵一次函數y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數有最大值,∴最大值為,故選B.2、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.3、D【解析】

根據題意可以求得P1,點P2,點P3的坐標,從而可以發(fā)現其中的變化的規(guī)律,從而可以求得P2018的坐標,本題得以解決.【詳解】解:由題意可得,

點P1(1,1),點P2(3,-1),點P3(5,1),

∴P2018的橫坐標為:2×2018-1=4035,縱坐標為:-1,

即P2018的坐標為(4035,-1),

故選:D.【點睛】本題考查了點的坐標變化規(guī)律,解答本題的關鍵是發(fā)現各點的變化規(guī)律,求出相應的點的坐標.4、A【解析】

根據兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.5、D【解析】

根據平行線分線段成比例定理的逆定理,當或時,,然后可對各選項進行判斷.【詳解】解:當或時,,

即或.

所以D選項是正確的.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.也考查了平行線分線段成比例定理的逆定理.6、A【解析】設身高GE=h,CF=l,AF=a,當x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數,∴自變量x的系數是固定值,∴這個函數圖象肯定是一次函數圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.7、D【解析】連接OC,過點A作AD⊥CD于點D,四邊形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等邊三角形,可得∠AOC=∠BOC=60°,故△ACO與△BOC為邊長相等的兩個等邊三角形,再根據銳角三角函數的定義得出AD=OA?sin60°=2×=,因此可求得S陰影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.故選D.點睛:本題考查的是扇形面積的計算,熟記扇形的面積公式及菱形的性質是解答此題的關鍵.8、A【解析】

根據圖形,結合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列出方程組.9、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、A【解析】

根據有理數的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,

故選:A.【點睛】本題主要考查有理數的除法,解題的關鍵是掌握有理數的除法法則:兩數相除,同號得正,異號得負,并把絕對值相除.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:由圖形可知,內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為AC+BC+AB=1.故答案為1.點睛:本題主要考查了平移的性質,需要注意的是:平移前后圖形的大小、形狀都不改變.12、B.【解析】試題分析:眾數是在一組數據中,出現次數最多的數據,這組數據中80出現12次,出現的次數最多,故這組數據的眾數為80分;中位數是一組數據從小到大(或從大到?。┡帕泻螅钪虚g的那個數(最中間兩個數的平均數).因此這組40個按大小排序的數據中,中位數是按從小到大排列后第20,21個數的平均數,而第20,21個數都在80分組,故這組數據的中位數為80分.故選B.考點:1.眾數;2.中位數.13、1.【解析】

直接利用平移的性質以及反比例函數圖象上點的坐標性質得出D點坐標進而得出答案.【詳解】∵點A(2,2)在雙曲線上,∴k=4,∵平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,∴D點縱坐標為:1,∴DE=1,O′E=1,∴D點橫坐標為:x==4,∴OO′=1,故答案為1.【點睛】本題考查了反比例函數圖象上的性質,正確得出D點坐標是解題關鍵.14、x≥1.【解析】

根據被開方數大于等于0列式計算即可得解.【詳解】根據題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【點睛】本題考查函數自變量的取值范圍,知識點為:二次根式的被開方數是非負數.15、【解析】

設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據△A'CF∽△BCA,可得,即=,進而得到BE=.【詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【點睛】本題主要考查了折疊問題以及相似三角形的判定與性質的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應邊和對應角相等.16、130【解析】分析:n邊形的內角和是因而內角和一定是180度的倍數.而多邊形的內角一定大于0,并且小于180度,因而內角和除去一個內角的值,這個值除以180度,所得數值比邊數要小,小的值小于1.詳解:設多邊形的邊數為x,由題意有解得因而多邊形的邊數是18,則這一內角為故答案為點睛:考查多邊形的內角和公式,熟記多邊形的內角和公式是解題的關鍵.三、解答題(共8題,共72分)17、(1)AC=;(2).【解析】【分析】(1)過A作AE⊥BC,在直角三角形ABE中,利用銳角三角函數定義求出AC的長即可;(2)由DF垂直平分BC,求出BF的長,利用銳角三角函數定義求出DF的長,利用勾股定理求出BD的長,進而求出AD的長,即可求出所求.【詳解】(1)如圖,過點A作AE⊥BC,在Rt△ABE中,tan∠ABC=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根據勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF=,∴DF=,在Rt△BFD中,根據勾股定理得:BD==,∴AD=5﹣=,則.【點睛】本題考查了解直角三角形的應用,正確添加輔助線、根據邊角關系熟練應用三角函數進行解答是解題的關鍵.18、(1)答案見解析;(2)【解析】分析:(1)直接列舉出所有可能的結果即可.(2)畫樹狀圖展示所有16種等可能的結果數,再找出他們兩人恰好選修同一門課程的結果數,然后根據概率公式求解.詳解:(1)學生小紅計劃選修兩門課程,她所有可能的選法有:A書法、B閱讀;A書法、C足球;A書法、D器樂;B閱讀,C足球;B閱讀,D器樂;C足球,D器樂.共有6種等可能的結果數;(2)畫樹狀圖為:共有16種等可能的結果數,其中他們兩人恰好選修同一門課程的結果數為4,所以他們兩人恰好選修同一門課程的概率點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.19、;(3)該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【解析】

(1)根據按每千克元的市場價收購了這種蘋果千克,此后每天每千克蘋果價格會上漲元,進而得出天后每千克蘋果的價格為元與的函數關系;(2)根據每千克售價乘以銷量等于銷售總金額,求出即可;(3)利用總售價-成本-費用=利潤,進而求出即可.【詳解】根據題意知,;.當時,最大利潤12500元,答:該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【點睛】此題主要考查了二次函數的應用以及二次函數最值求法,得出與的函數關系是解題關鍵.20、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據喜歡跳繩的人數以及所占的比例求得總人數,然后用總人數減去喜歡跳繩、乒乓球、其它的人數即可得;(2)用乒乓球的人數除以總人數即可得;(3)用800乘以喜歡籃球人數所占的比例即可得;(4)根據(1)中求得的喜歡籃球的人數即可補全條形圖;(5)畫樹狀圖可得所有可能的情況,根據樹狀圖求得2名同學恰好是1名女同學和1名男同學的結果,根據概率公式進行計算即可.【詳解】(1)調查的總人數為20÷40%=50(人),喜歡籃球項目的同學的人數=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計全校學生中有80人喜歡籃球項目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結果數,其中所抽取的2名同學恰好是1名女同學和1名男同學的結果數為12,所以所抽取的2名同學恰好是1名女同學和1名男同學的概率=.21、(1)3+【解析】

(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設AE=x,則ME=BM=2x,AM=3x,根據AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.

(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質、直角三角形斜邊中線定理,等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.22、(1)孔明同學測試成績位90分,平時成績?yōu)?5分;(2)不可能;(3)他的測試成績應該至少為1分.【解析】試題分析:(1)分別利用孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;(2)利用測試成績占80%,平時成績占20%,進而得出答案;(3)首先假設平時成績?yōu)闈M分,進而得出不等式,求出測試成績的最小值.試題解析:(1)設孔明同學測試成績?yōu)閤分,平時成績?yōu)閥分,依題意得:,解之得:.答:孔明同學測試成績位90分,平時成績?yōu)?5分;(2)由題意可得:80﹣70×80%=24,24÷20%=120>100

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論