山東省東營市墾利區(qū)重點名校2023屆初三下學期四調(diào)考試數(shù)學試題理試題含解析_第1頁
山東省東營市墾利區(qū)重點名校2023屆初三下學期四調(diào)考試數(shù)學試題理試題含解析_第2頁
山東省東營市墾利區(qū)重點名校2023屆初三下學期四調(diào)考試數(shù)學試題理試題含解析_第3頁
山東省東營市墾利區(qū)重點名校2023屆初三下學期四調(diào)考試數(shù)學試題理試題含解析_第4頁
山東省東營市墾利區(qū)重點名校2023屆初三下學期四調(diào)考試數(shù)學試題理試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山東省東營市墾利區(qū)重點名校2023屆初三下學期四調(diào)考試數(shù)學試題理試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.大箱子裝洗衣粉36千克,把大箱子里的洗衣粉分裝在4個大小相同的小箱子里,裝滿后還剩余2千克洗衣粉,則每個小箱子裝洗衣粉(

)A.6.5千克B.7.5千克C.8.5千克D.9.5千克2.右圖是由四個小正方體疊成的一個立體圖形,那么它的俯視圖是()A. B. C. D.3.如圖,3個形狀大小完全相同的菱形組成網(wǎng)格,菱形的頂點稱為格點.已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若也在格點上,且∠AED=∠ACD,則∠AEC度數(shù)為()A.75° B.60° C.45° D.30°4.等腰三角形兩邊長分別是2cm和5cm,則這個三角形周長是()A.9cmB.12cmC.9cm或12cmD.14cm5.下列手機手勢解鎖圖案中,是軸對稱圖形的是()A. B. C. D.6.在直角坐標系中,已知點P(3,4),現(xiàn)將點P作如下變換:①將點P先向左平移4個單位,再向下平移3個單位得到點P1;②作點P關于y軸的對稱點P2;③將點P繞原點O按逆時針方向旋轉(zhuǎn)90°得到點P3,則P1,P2,P3的坐標分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)7.若a=,則實數(shù)a在數(shù)軸上對應的點的大致位置是()A.點E B.點F C.點G D.點H8.已知一次函數(shù)y=kx+b的圖象如圖,那么正比例函數(shù)y=kx和反比例函數(shù)y=在同一坐標系中的圖象的形狀大致是()A. B.C. D.9.一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是()A.3 B.﹣1 C.﹣3 D.﹣210.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關系是()A.點A在⊙O內(nèi) B.點A在⊙O上 C.點A在⊙O外 D.內(nèi)含二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正方形ABCD中,O是對角線AC、BD的交點,過O點作OE⊥OF,OE、OF分別交AB、BC于點E、點F,AE=3,F(xiàn)C=2,則EF的長為_____.12.早春二月的某一天,大連市南部地區(qū)的平均氣溫為﹣3℃,北部地區(qū)的平均氣溫為﹣6℃,則當天南部地區(qū)比北部地區(qū)的平均氣溫高_____℃.13.如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交于點E,以點O為圓心,OC的長為半徑作交OB于點D,若OA=2,則陰影部分的面積為.14.如圖,矩形ABCD中,AB=2,點E在AD邊上,以E為圓心,EA長為半徑的⊙E與BC相切,交CD于點F,連接EF.若扇形EAF的面積為43π,則15.如圖,在平面直角坐標系中,點A和點C分別在y軸和x軸正半軸上,以OA、OC為邊作矩形OABC,雙曲線(>0)交AB于點E,AE︰EB=1︰3.則矩形OABC的面積是__________.16.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個單位,再向上平移3個單位得到的拋物線的頂點坐標是_____.17.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.三、解答題(共7小題,滿分69分)18.(10分)某市扶貧辦在精準扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:產(chǎn)品名稱核桃花椒甘藍每輛汽車運載量(噸)1064每噸土特產(chǎn)利潤(萬元)0.70.80.5若裝運核桃的汽車為x輛,裝運甘藍的車輛數(shù)是裝運核桃車輛數(shù)的2倍多1,假設30輛車裝運的三種產(chǎn)品的總利潤為y萬元.(1)求y與x之間的函數(shù)關系式;(2)若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產(chǎn)品的車輛數(shù)及總利潤最大值.19.(5分)如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求證:四邊形ABCD是平行四邊形;(2)直接寫出圖中所有相等的線段(AE=CF除外).20.(8分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制出如下的統(tǒng)計圖①和圖②,請跟進相關信息,解答下列問題:(1)本次抽測的男生人數(shù)為,圖①中m的值為;(2)求本次抽測的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)若規(guī)定引體向上5次以上(含5次)為體能達標,根據(jù)樣本數(shù)據(jù),估計該校350名九年級男生中有多少人體能達標.21.(10分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:(1)請你補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);(3)為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.22.(10分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)23.(12分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.24.(14分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據(jù)實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】【分析】設每個小箱子裝洗衣粉x千克,根據(jù)題意列方程即可.【詳解】設每個小箱子裝洗衣粉x千克,由題意得:4x+2=36,解得:x=8.5,即每個小箱子裝洗衣粉8.5千克,故選C.【點睛】本題考查了列一元一次方程解實際問題,弄清題意,找出等量關系是解答本題的關鍵.2、B【解析】解:從上面看,上面一排有兩個正方形,下面一排只有一個正方形,故選B.3、B【解析】

將圓補充完整,利用圓周角定理找出點E的位置,再根據(jù)菱形的性質(zhì)即可得出△CME為等邊三角形,進而即可得出∠AEC的值.【詳解】將圓補充完整,找出點E的位置,如圖所示.∵弧AD所對的圓周角為∠ACD、∠AEC,∴圖中所標點E符合題意.∵四邊形∠CMEN為菱形,且∠CME=60°,∴△CME為等邊三角形,∴∠AEC=60°.故選B.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定依據(jù)圓周角定理,根據(jù)圓周角定理結(jié)合圖形找出點E的位置是解題的關鍵.4、B【解析】當腰長是2cm時,因為2+2<5,不符合三角形的三邊關系,排除;當腰長是5cm時,因為5+5>2,符合三角形三邊關系,此時周長是12cm.故選B.5、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的定義進行判斷.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,所以A錯誤;B.既不是軸對稱圖形,也不是中心對稱圖形,所以B錯誤;C.是中心對稱圖形,不是軸對稱圖形,所以C錯誤;D.是軸對稱圖形,不是中心對稱圖形,所以D正確.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握定義是本題解題的關鍵.6、D【解析】

把點P的橫坐標減4,縱坐標減3可得P1的坐標;讓點P的縱坐標不變,橫坐標為原料坐標的相反數(shù)可得P2的坐標;讓點P的縱坐標的相反數(shù)為P3的橫坐標,橫坐標為P3的縱坐標即可.【詳解】∵點P(3,4),將點P先向左平移4個單位,再向下平移3個單位得到點P1,∴P1的坐標為(﹣1,1).∵點P關于y軸的對稱點是P2,∴P2(﹣3,4).∵將點P繞原點O按逆時針方向旋轉(zhuǎn)90°得到點P3,∴P3(﹣4,3).故選D.【點睛】本題考查了坐標與圖形的變化;用到的知識點為:左右平移只改變點的橫坐標,左減右加,上下平移只改變點的縱坐標,上加下減;兩點關于y軸對稱,縱坐標不變,橫坐標互為相反數(shù);(a,b)繞原點O按逆時針方向旋轉(zhuǎn)90°得到的點的坐標為(﹣b,a).7、C【解析】

根據(jù)被開方數(shù)越大算術(shù)平方根越大,可得答案.【詳解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故選:C.【點睛】本題考查了實數(shù)與數(shù)軸,利用被開方數(shù)越大算術(shù)平方根越大得出3<<4是解題關鍵.8、C【解析】試題分析:如圖所示,由一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,可得k>1,b<1.因此可知正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,反比例函數(shù)y=的圖象經(jīng)過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數(shù)的圖象;2、一次函數(shù)的圖象;3、一次函數(shù)圖象與系數(shù)的關系9、C【解析】試題分析:根據(jù)根與系數(shù)的關系可得出兩根的積,即可求得方程的另一根.設m、n是方程x2+kx﹣3=0的兩個實數(shù)根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點】根與系數(shù)的關系;一元二次方程的解.10、A【解析】

直接利用點與圓的位置關系進而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關系是:點A在⊙O內(nèi).故選A.【點睛】此題主要考查了點與圓的位置關系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內(nèi)?d<r是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,從而求得EF的值.【詳解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案為【點睛】本題考查了正方形的性質(zhì)、三角形全等的性質(zhì)和判定、勾股定理,在四邊形中常利用三角形全等的性質(zhì)和勾股定理計算線段的長.12、3【解析】

用南部氣溫減北部的氣溫,根據(jù)“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”求出它們的差就是高出的溫度.【詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當天南部地區(qū)比北部地區(qū)的平均氣溫高3℃,故答案為:3.【點睛】本題考查了有理數(shù)的減法運算法則,減法運算法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).13、.【解析】試題解析:連接OE、AE,∵點C為OA的中點,∴∠CEO=30°,∠EOC=60°,∴△AEO為等邊三角形,∴S扇形AOE=∴S陰影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.14、1【解析】分析:設∠AEF=n°,由題意nπ×2詳解:設∠AEF=n°,由題意nπ×2∴∠AEF=120°,∴∠FED=60°,∵四邊形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=12∴BC=AD=2+1=1,故答案為1.點睛:本題考查切線的性質(zhì)、矩形的性質(zhì)、扇形的面積公式、直角三角形10度角性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.15、1【解析】

根據(jù)反比例函數(shù)圖象上點的坐標特征設E點坐標為(t,),則利用AE:EB=1:3,B點坐標可表示為(4t,),然后根據(jù)矩形面積公式計算.【詳解】設E點坐標為(t,),

∵AE:EB=1:3,

∴B點坐標為(4t,),

∴矩形OABC的面積=4t?=1.

故答案是:1.【點睛】考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.16、(﹣7,0)【解析】

直接利用平移規(guī)律“左加右減,上加下減”得出平移后的解析式進而得出答案.【詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個單位,再向上平移3個單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點坐標是:(-7,0).故答案為(-7,0).【點睛】此題主要考查了二次函數(shù)與幾何變換,正確掌握平移規(guī)律是解題關鍵.17、1【解析】

根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.三、解答題(共7小題,滿分69分)18、(1)y=﹣3.4x+141.1;(1)當裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4萬元.【解析】

(1)根據(jù)題意可以得裝運甘藍的汽車為(1x+1)輛,裝運花椒的汽車為30﹣x﹣(1x+1)=(12﹣3x)輛,從而可以得到y(tǒng)與x的函數(shù)關系式;(1)根據(jù)裝花椒的汽車不超過8輛,可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,從而可以得到總利潤最大時,裝運各種產(chǎn)品的車輛數(shù).【詳解】(1)若裝運核桃的汽車為x輛,則裝運甘藍的汽車為(1x+1)輛,裝運花椒的汽車為30﹣x﹣(1x+1)=(12﹣3x)輛,根據(jù)題意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.(1)根據(jù)題意得:,解得:7≤x≤,∵x為整數(shù),∴7≤x≤2.∵10.6>0,∴y隨x增大而減小,∴當x=7時,y取最大值,最大值=﹣3.4×7+141.1=117.4,此時:1x+1=12,12﹣3x=1.答:當裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4萬元.【點睛】本題考查了一次函數(shù)的應用,解題的關鍵是熟練的掌握一次函數(shù)的應用.19、(1)見解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整體分析:(1)用ASA證明△ADE≌△CBF,得到AD=BC,根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明;(2)根據(jù)△ADE≌△CBF,和平行四邊形ABCD的性質(zhì)及線段的和差關系找相等的線段.解:(1)證明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四邊形ABCD是平行四邊形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四邊形ABCD是平行四邊形,∴AB=DC.20、(1)50、1;(2)平均數(shù)為5.16次,眾數(shù)為5次,中位數(shù)為5次;(3)估計該校350名九年級男生中有2人體能達標.【解析】分析:(Ⅰ)根據(jù)4次的人數(shù)及其百分比可得總?cè)藬?shù),用6次的人數(shù)除以總?cè)藬?shù)求得m即可;(Ⅱ)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義求解可得;(Ⅲ)總?cè)藬?shù)乘以樣本中5、6、7次人數(shù)之和占被調(diào)查人數(shù)的比例可得.詳解:(Ⅰ)本次抽測的男生人數(shù)為10÷20%=50,m%=×100%=1%,所以m=1.故答案為50、1;(Ⅱ)平均數(shù)為=5.16次,眾數(shù)為5次,中位數(shù)為=5次;(Ⅲ)×350=2.答:估計該校350名九年級男生中有2人體能達標.點睛:本題考查了條形統(tǒng)計圖,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).21、(1)詳見解析;(2)72°;(3)3【解析】

(1)由B類型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一男一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、見解析【解析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【詳解】解:如圖,點E即為所求作的點.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關鍵.23、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;

(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問題;

(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論