版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
常微分方程第五章線性微分方程組第一頁(yè),共三十六頁(yè),編輯于2023年,星期六例如,已知在空間運(yùn)動(dòng)的質(zhì)點(diǎn)的速度與時(shí)間及點(diǎn)的坐標(biāo)的關(guān)系為且質(zhì)點(diǎn)在時(shí)刻t經(jīng)過點(diǎn)求該質(zhì)點(diǎn)的運(yùn)動(dòng)軌跡。第二頁(yè),共三十六頁(yè),編輯于2023年,星期六因?yàn)?所以這個(gè)問題其實(shí)就是求一階微分方程組滿足初始條件的解(1.12)第三頁(yè),共三十六頁(yè),編輯于2023年,星期六中,令就可以把它化成等價(jià)的一階微分方程組注意,這是一個(gè)含n個(gè)未知函數(shù)的一階微分方程組。。另外,在n階微分方程第四頁(yè),共三十六頁(yè),編輯于2023年,星期六含有n個(gè)未知函數(shù)的一階微分方程組的一般形式為:此方程組在上的一個(gè)解,是這樣的一組函數(shù)使得在上有恒等式第五頁(yè),共三十六頁(yè),編輯于2023年,星期六含有n個(gè)任意常數(shù)的解稱為方程組的通解.如果通解滿足方程組第六頁(yè),共三十六頁(yè),編輯于2023年,星期六則稱后者為(1)的通積分.如果已求得(1)的通解或通積分,要求滿足初始條件的解,可以把此初始條件代入通解或通積分之中,得到關(guān)于的n個(gè)方程式,如果從其中解得再代回通解或通積分中,就得到所求的初值問題的解.
第七頁(yè),共三十六頁(yè),編輯于2023年,星期六為了簡(jiǎn)潔方便,經(jīng)常采用向量與矩陣來研究一階微分方程組(1)令n維向量函數(shù)并定義則(1)可記成向量形式第八頁(yè),共三十六頁(yè),編輯于2023年,星期六初始條件可記為
其中這樣,從形式上看,一階方程組與一階方程式完全一樣了。
進(jìn)一步,對(duì)n維向量Y和矩陣,第九頁(yè),共三十六頁(yè),編輯于2023年,星期六定義易于證明以下性質(zhì):
當(dāng)且僅當(dāng)Y=0(0表示零向量,下同);
第十頁(yè),共三十六頁(yè),編輯于2023年,星期六對(duì)任意常數(shù)有對(duì)任意常數(shù)有
稱‖Y‖和‖A‖分別為向量Y和矩陣A的范數(shù)。進(jìn)而還有如下性質(zhì)第十一頁(yè),共三十六頁(yè),編輯于2023年,星期六有了以上準(zhǔn)備,完全類似于第三章定理3.1,我們有如下的關(guān)于初值問題(1)的解的存在與唯一性定理.定理5.1
如果函數(shù)F(x,Y)在n+1維空間的區(qū)域上滿足:
1)連續(xù);
2)關(guān)于Y滿足李普希茲條件,即存在N>0,使對(duì)于R上任意兩點(diǎn)有則初值問題(1)的解在上存在且唯一,其中
第十二頁(yè),共三十六頁(yè),編輯于2023年,星期六如果在一階微分方程組(1)中,函數(shù)方程組(1)是線性的。為線性的。5.2一階線性微分方程組的一般概念
關(guān)于第十三頁(yè),共三十六頁(yè),編輯于2023年,星期六則稱(1)為一階線性微分方程組。我們總假設(shè)(1)的系數(shù)及在某個(gè)區(qū)間上連續(xù)。向量形式:記:第十四頁(yè),共三十六頁(yè),編輯于2023年,星期六向量形式如果在I上,,方程組變成(5.2)
我們把(5.2)稱為一階線性齊次方程組。
如果(5.2與(5.1)中A(x)相同,則稱(5.2)為(5.1)的對(duì)應(yīng)的齊次方程組.與第二章中關(guān)于一階線性微分方程的結(jié)果類似,我們可以證明如下的關(guān)于(5.1)的滿足初始條件(5.3)的解的存在與唯一性定理.
(5.1)
(5.3)第十五頁(yè),共三十六頁(yè),編輯于2023年,星期六定理5.1′如果(5.1)中的A(x)及F(x)在區(qū)間I=上連續(xù),則對(duì)于上任一點(diǎn)x以及任意給定的方程組(5.1)的滿足初始條件(5.3)的解在上存在且唯一.
它的結(jié)論與定理3.1的不同之處是:定理3.1的解的存在區(qū)間是局部的,而定理5.1則指出解在整個(gè)區(qū)間上存在.第十六頁(yè),共三十六頁(yè),編輯于2023年,星期六5.2一階線性齊次方程組的一般理論
1.一階線性齊次微分方程組解的性質(zhì)
本節(jié)主要研究一階線性齊次方程組(5.2)的通解結(jié)構(gòu).為此我們首先從(5.2)的解的性質(zhì)入手.
(5.2)
第十七頁(yè),共三十六頁(yè),編輯于2023年,星期六
是方程組(5.2)的m個(gè)解,則
也是(5.2)的解,其中是任意常數(shù).換句話說,線性齊次方程組(5.2)的任何有限個(gè)解的線性組合仍為(5.2)的解.
若
(5.4)
第十八頁(yè),共三十六頁(yè),編輯于2023年,星期六定理5.2告訴我們,一階線性齊次微分方程組(5.2)的解集合構(gòu)成了一個(gè)線性空間.為了搞清楚這個(gè)線性空間的性質(zhì),進(jìn)而得到方程組(5.2)的解的結(jié)構(gòu),我們引入如下概念.
定義5.1
,使得
在區(qū)間I上恒成立,則稱這m個(gè)向量函數(shù)在區(qū)間I上線性相關(guān);否則稱它們?cè)趨^(qū)間I上線性無關(guān).
顯然,兩個(gè)向量函數(shù)的對(duì)應(yīng)分量成比例是它們?cè)趨^(qū)間I上線性相關(guān)的充要條件.另外,如果在向量組中有一零向量,則它們?cè)趨^(qū)間I上線性相關(guān).
若有函數(shù)組
第十九頁(yè),共三十六頁(yè),編輯于2023年,星期六
例3中兩個(gè)向量函數(shù)的各個(gè)對(duì)應(yīng)分量都構(gòu)成線性相關(guān)函數(shù)組.這個(gè)例題說明,向量函數(shù)組的線性相關(guān)性和由它們的分量構(gòu)成的函數(shù)組的線性相關(guān)性并不等價(jià).下面介紹n個(gè)n維向量函數(shù)組
在其定義區(qū)間I上線性相關(guān)與線性無關(guān)的判別準(zhǔn)則.
我們考察由這些列向量所組成的行列式
通常把它稱為向量組(5.10)的朗斯基(Wronski)行列式.
(5.10)
第二十頁(yè),共三十六頁(yè),編輯于2023年,星期六
定理5.3
如果向量組(5.10)在區(qū)間I上線性相關(guān),則它們的朗斯基行列式W(x)在I上恒等于零.
證明依假設(shè),存在不全為零的常數(shù),使得
把上式寫成純量形式,有
這是關(guān)于的線性齊次代數(shù)方程組,且它對(duì)任一都有非零解根據(jù)線性代數(shù)知識(shí),它的系數(shù)行列式都為零.故在I上有W(x)≡0.證畢.
W(x)對(duì)任一第二十一頁(yè),共三十六頁(yè),編輯于2023年,星期六對(duì)于一般的向量函數(shù)組,定理3.3的逆定理未必成立.例如向量函數(shù)
的朗斯基行列式恒等于零,但它們卻是線性無關(guān)的.然而,當(dāng)所討論的向量函數(shù)組是方程組(5.8)的解時(shí),我們有下面的結(jié)論.
定理5.4
如果是方程組(5.8)的n個(gè)線性無關(guān)解,則它的朗斯基行列式W(x)在I上恒不為零.
第二十二頁(yè),共三十六頁(yè),編輯于2023年,星期六
由定理5.3和定理5.4立即得到如下的推論.
推論5.1
如果向量組(5.10)的朗斯基行列式W(x)在區(qū)間I上的某一點(diǎn)處不等于零,即,則向量組(5.10)在I上線性無關(guān).
實(shí)際上,這個(gè)推論是定理5.3的逆否命題.
推論5.2
如果方程組(5.8)的n個(gè)解的朗斯基行列式W(x)在其定義區(qū)間I上某一點(diǎn)x0等于零,即則該解組在I上必線性相關(guān).第二十三頁(yè),共三十六頁(yè),編輯于2023年,星期六實(shí)際上,這個(gè)推論是定理5.4的逆否命題.
推論5.3
方程組(5.2)的n個(gè)解在其定義區(qū)間I上線性無關(guān)的充要條件是它們的朗斯基行列式W(x)在I上任一點(diǎn)不為零.
條件的充分性由推論5.1立即可以得到.
必要性用反證法及推論5.2證明是顯然的.證畢.2.一階線性齊次微分方程組解空間的結(jié)構(gòu).
我們把一階線性齊次方程組(5.2)的n個(gè)線性無關(guān)解稱為它的基本解組.
例4
易于驗(yàn)證向量函數(shù)
第二十四頁(yè),共三十六頁(yè),編輯于2023年,星期六
是方程組
的基本解組.
定理5.5
方程組(5.2)必存在基本解組.
第二十五頁(yè),共三十六頁(yè),編輯于2023年,星期六
定理5.6
如果是齊次方程組(5.2)的基本解組,則其線性組合
是齊次方程組(5.2)的通解,其中為n個(gè)任意常數(shù).
推論5.4
線性齊次方程組(5.2)的線性無關(guān)解的個(gè)數(shù)不能多于n
個(gè).
第二十六頁(yè),共三十六頁(yè),編輯于2023年,星期六
3.劉維爾公式
齊次方程組(5.2)的解和其系數(shù)之間有下列聯(lián)系.
定理5.7
如果是齊次方程組(5.2)的n個(gè)解,則這n個(gè)解的朗斯基行列式與方程組(5.2)的系數(shù)有如下關(guān)系式
這個(gè)關(guān)系式稱為劉維爾(Liouville)公式.
第二十七頁(yè),共三十六頁(yè),編輯于2023年,星期六
在代數(shù)學(xué)中,稱為矩陣的跡,記作,因此劉維爾公式可表為
從劉維爾公式可以看出,齊次方程組(5.2)的幾個(gè)解所構(gòu)成的朗斯基行列式W(x)或者恒為零,或者恒不為零.第二十八頁(yè),共三十六頁(yè),編輯于2023年,星期六5.4一階線性非齊次方程組的一般理論
本節(jié)研究一階線性非齊次方程組
的通解結(jié)構(gòu)與常數(shù)變易法.
5.4.1通解結(jié)構(gòu)
定理3.8
如果是線性非齊次方程組(5.1)的解,而是其對(duì)應(yīng)齊次方程組(5.2)的解,則是非齊次方程組(5.1)的解.
定理5.9
線性非齊次方程組(5.1)的任意兩個(gè)解之差是其對(duì)應(yīng)齊次方程組(5.2)的解.
第二十九頁(yè),共三十六頁(yè),編輯于2023年,星期六是對(duì)應(yīng)齊次方程組(5.2)的一個(gè)基本解組,則方程組(5.1)的通解為
這里是任意常數(shù).
定理5.10
線性非齊次方程組(5.1)的通解等于其對(duì)應(yīng)的齊次方程組(5.2)的通解與方程組(5.1)的一個(gè)特解之和.即若是非齊次方程組(5.1)的一個(gè)特解,
第三十頁(yè),共三十六頁(yè),編輯于2023年,星期六
5.4.2
拉格朗日常數(shù)變易法
在第一章我們介紹了對(duì)于一階線性非齊次方程,可用常數(shù)變易法求其通解.現(xiàn)在,對(duì)于線性非齊次方程組,自然要問,是否也有常數(shù)變易法求其通解呢?事實(shí)上,定理5.10告訴我們,為了求解非齊次方程組(5.1),只需求出它的一個(gè)特解和對(duì)應(yīng)齊次方程組(5.2)的一個(gè)基本解組.而當(dāng)(5.2)的基本解組已知時(shí),類似于一階方程式,有下面的常數(shù)變易法可以求得(5.1)的一個(gè)特解.
為了計(jì)算簡(jiǎn)潔,我們定義(5.2)的基本解矩陣如下:
第三十一頁(yè),共三十六頁(yè),編輯于2023年,星期六
其中每一列均為(5.2)的解,且是(5.2)的一個(gè)基本解組.因此.
由定理5.6知,齊次方程組(5.2)的通解可表為
,
其中C為列向量
第三十二頁(yè),共三十六頁(yè),編輯于2023年,星期六現(xiàn)在求(5.1)的形如
的解,其中
為待定向量函數(shù).將(5.17)代入(5.1)有
其中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 成人糖尿病患者管理的營(yíng)養(yǎng)治療建議
- 吆喝 課件教學(xué)課件
- 冷凍半成品轉(zhuǎn)讓合同模板
- 高級(jí)講師聘用合同模板
- 道軌采購(gòu)合同模板
- 鋁門代理合同模板
- 度賒銷合同模板
- 營(yíng)銷代理意向合同模板
- 續(xù)交房租合同模板
- 崇州勞務(wù)派遣合同模板
- 高中思想政治-試卷講評(píng)教學(xué)課件設(shè)計(jì)
- VTE風(fēng)險(xiǎn)評(píng)估知識(shí)資料課件
- 2023年03月南寧市公開考試招聘縣(市區(qū))開發(fā)區(qū)中小學(xué)教師筆試題庫(kù)含答案解析
- 【無線射頻芯片】-無線連通航空航天和國(guó)防世界
- 禮記學(xué)記講座文稿學(xué)習(xí)
- 信息基礎(chǔ)設(shè)施
- 酒精相關(guān)障礙
- 機(jī)電事業(yè)部酒店04喜來登02starwood it施工需求
- 2023年安徽省中考數(shù)學(xué)試題及答案word版(可直接打印)
- 咯血的介入治療
- 工序移交單(標(biāo)準(zhǔn)模版)
評(píng)論
0/150
提交評(píng)論