


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高三數(shù)學(xué)必修四關(guān)鍵知識(shí)點(diǎn)總結(jié)2023高三數(shù)學(xué)必修四知識(shí)點(diǎn)總結(jié)1立體幾何初步(1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等表示:用各頂點(diǎn)字母,如五棱錐幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺(tái):定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等表示:用各頂點(diǎn)字母,如五棱臺(tái)幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。(6)圓臺(tái):定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。高三數(shù)學(xué)必修四知識(shí)點(diǎn)總結(jié)2向量的向量積定義:兩個(gè)向量a和b的向量積(外積、叉積)是一個(gè)向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個(gè)次序構(gòu)成右手系。若a、b共線,則a×b=0。向量的向量積性質(zhì):∣a×b∣是以a和b為邊的平行四邊形面積。a×a=0。a‖b〈=〉a×b=0。向量的向量積運(yùn)算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量沒有除法,“向量AB/向量CD”是沒有意義的。高三數(shù)學(xué)必修四知識(shí)點(diǎn)總結(jié)31、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)2、圓錐體:表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,3、正方體a-邊長,S=6a2,V=a34、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面積h-高V=Sh6、棱錐S-底面積h-高V=Sh/37、棱臺(tái)S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/38、擬柱體S1-上底面積,S2-下底面積,S0-中截面積h-高,V=h(S1+S2+4S0)/69、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)11、直圓錐r-底半徑h-高V=πr^2h/312、圓臺(tái)r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半徑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《語文樂園七》教案
- 二手商品車買賣合同范本
- 《草莓》大班教案
- 農(nóng)村共同建房合同范例
- 廠房裝修安全合同范本
- pvc地板膠合同范本
- 叉車租車安全合同范本
- 《猜字謎》教學(xué)反思
- 農(nóng)產(chǎn)品平臺(tái)銷售合同范本
- 中介傭金合同范本簡約模板
- 4《我們的公共生活》第一課時(shí) 教學(xué)設(shè)計(jì)-2023-2024學(xué)年道德與法治五年級(jí)下冊(cè)統(tǒng)編版
- GB/T 23862-2024文物包裝與運(yùn)輸規(guī)范
- 2024年放射工作人員放射防護(hù)培訓(xùn)考試題及答案
- SH∕T 3097-2017 石油化工靜電接地設(shè)計(jì)規(guī)范
- 高中英語真題-高考英語語法填空專練(6)及答案
- 倉儲(chǔ)物流中心物業(yè)管理服務(wù)費(fèi)報(bào)價(jià)單
- 室內(nèi)給水管道安裝安全技術(shù)交底
- 全身望診課件
- 蘇教版三年級(jí)下冊(cè)《植物的一生》
- 《研學(xué)旅行課程設(shè)計(jì)》課件-理解研學(xué)課程設(shè)計(jì)內(nèi)涵
- 《西式點(diǎn)心制作》課件-抹茶戚風(fēng)蛋糕卷
評(píng)論
0/150
提交評(píng)論