




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)學(xué)歸納法教學(xué)設(shè)計(jì)作為一名老師,常常要根據(jù)教學(xué)需要編寫(xiě)教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是一個(gè)系統(tǒng)化規(guī)劃教學(xué)系統(tǒng)的過(guò)程。寫(xiě)教學(xué)設(shè)計(jì)需要注意哪些格式呢?下面是小編收集整理的數(shù)學(xué)歸納法教學(xué)設(shè)計(jì),供大家參考借鑒,希望可以幫助到有需要的朋友。數(shù)學(xué)歸納法教學(xué)設(shè)計(jì)1一、教材分析數(shù)學(xué)歸納法是一種重要的數(shù)學(xué)證明方法,在高中數(shù)學(xué)內(nèi)容中占有重要的地位,其中體現(xiàn)的數(shù)學(xué)思想方法對(duì)學(xué)生進(jìn)一步學(xué)習(xí)數(shù)學(xué)、領(lǐng)悟數(shù)學(xué)思想至關(guān)重要。本課是數(shù)學(xué)歸納法的第一節(jié)課,前面學(xué)生對(duì)等差數(shù)列、數(shù)列求和、二項(xiàng)式定理等知識(shí)有較全面的把握和較深入的理解,初步掌握了由有限多個(gè)特殊事例得出一般結(jié)論的推理方法,即不完全歸納法,這是研究數(shù)學(xué)問(wèn)題,猜想或發(fā)現(xiàn)數(shù)學(xué)規(guī)律的重要手段。但是,由有限多個(gè)特殊事例得出的結(jié)論不一定正確,這種推理方法不能作為一種論證方法。因此,在不完全歸納法的基礎(chǔ)上,必須進(jìn)一步學(xué)習(xí)嚴(yán)謹(jǐn)?shù)目茖W(xué)的論證方法——數(shù)學(xué)歸納法,這是促進(jìn)學(xué)生從有限思維發(fā)展到無(wú)限思維的一個(gè)重要環(huán)節(jié),同時(shí)本節(jié)內(nèi)容又是培養(yǎng)學(xué)生嚴(yán)密的推理能力、訓(xùn)練學(xué)生的抽象思維能力、體驗(yàn)數(shù)學(xué)內(nèi)在美的好素材。二、教學(xué)目標(biāo)學(xué)生通過(guò)數(shù)列等相關(guān)知識(shí)的學(xué)習(xí),已經(jīng)基本掌握了不完全歸納法,已經(jīng)由一定的觀察、歸納、猜想能力。根據(jù)教學(xué)內(nèi)容特點(diǎn)和教學(xué)大綱,結(jié)合學(xué)生實(shí)際而制定以下教學(xué)目標(biāo):1.知識(shí)目標(biāo)(1)了解由有限多個(gè)特殊事例得出的一般結(jié)論不一定正確。(2)初步理解數(shù)學(xué)歸納法原理。(3)能以遞推思想為指導(dǎo),理解數(shù)學(xué)歸納法證明數(shù)學(xué)命題的兩個(gè)步驟一個(gè)結(jié)論。(4)會(huì)用數(shù)學(xué)歸納法證明與正整數(shù)相關(guān)的簡(jiǎn)單的恒等式。2.能力目標(biāo)(1)通過(guò)對(duì)數(shù)學(xué)歸納法的學(xué)習(xí),使學(xué)生初步掌握觀察、歸納、猜想、分析能力和嚴(yán)密的邏輯推理能力。(2)在學(xué)習(xí)中培養(yǎng)學(xué)生大膽猜想,小心求證的辨證思維素質(zhì)以及發(fā)現(xiàn)問(wèn)題、提出問(wèn)題的意識(shí)和數(shù)學(xué)交流的能力。3.情感目標(biāo)(1)通過(guò)對(duì)數(shù)學(xué)歸納法原理的探究,親歷知識(shí)的構(gòu)建過(guò)程,領(lǐng)悟其中所蘊(yùn)含的數(shù)學(xué)思想和辨正唯物主義觀點(diǎn)。(2)體驗(yàn)探索中挫折的艱辛和成功的快樂(lè),感悟數(shù)學(xué)的內(nèi)在美,激發(fā)學(xué)生學(xué)習(xí)熱情,使學(xué)生喜歡數(shù)學(xué)。(3)學(xué)生通過(guò)置疑與探究,初步形成正確的數(shù)學(xué)觀,創(chuàng)新意識(shí)和嚴(yán)謹(jǐn)?shù)目茖W(xué)精神。三、教學(xué)重點(diǎn)與難點(diǎn)1.教學(xué)重點(diǎn)借助具體實(shí)例了解數(shù)學(xué)歸納法的基本思想,掌握它的基本步驟,運(yùn)用它證明一些與正整數(shù)有關(guān)的簡(jiǎn)單恒等式,特別要注意遞推步驟中歸納假設(shè)的運(yùn)用和恒等變換的運(yùn)用。2.教學(xué)難點(diǎn)(1)如何理解數(shù)學(xué)歸納法證題的嚴(yán)密性和有效性。(2)遞推步驟中如何利用歸納假設(shè),即如何利用假設(shè)證明當(dāng)時(shí)結(jié)論正確。四、教學(xué)方法本節(jié)課采用交往性教學(xué)方法,以學(xué)生及其發(fā)展為本,一切從學(xué)生出發(fā)。在教師組織啟發(fā)下,通過(guò)創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)習(xí)欲望。師生之間、學(xué)生之間共同探究多米諾骨牌倒下的原理,并類(lèi)比多米諾骨牌倒下的原理,探究數(shù)學(xué)歸納法的原理、步驟;培養(yǎng)學(xué)生歸納、類(lèi)比推理的能力,進(jìn)而應(yīng)用數(shù)學(xué)歸納法,證明一些與正整數(shù)n有關(guān)的簡(jiǎn)單數(shù)學(xué)命題;提高學(xué)生的應(yīng)用能力,分析問(wèn)題、解決問(wèn)題的能力。既重視教師的組織引導(dǎo),又強(qiáng)調(diào)學(xué)生的.主體性、主動(dòng)性、交流性和合作性。五、教學(xué)過(guò)程(一)創(chuàng)設(shè)情境,提出問(wèn)題情境一:根據(jù)觀察某學(xué)校第一個(gè)到校的女同學(xué),第二個(gè)到校的也是女同學(xué),第三個(gè)到校的還是女同學(xué),于是得出:這所學(xué)校的學(xué)生全部是女同學(xué)。情境二:平面內(nèi)三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,于是得出:凸邊形內(nèi)角和是。情境三:數(shù)列的通項(xiàng)公式為,可以求得,,,,于是猜想出數(shù)列的通項(xiàng)公式為。結(jié)論:運(yùn)用有限多個(gè)特殊事例得出的一般性結(jié)論,即不完全歸納法不一定正確。因此它不能作為一種論證的方法。提出問(wèn)題:如何尋找一個(gè)科學(xué)有效的方法證明結(jié)論的正確性呢?我們本節(jié)課所要學(xué)習(xí)的數(shù)學(xué)歸納法就是解決這一問(wèn)題的方法之一。(二)實(shí)驗(yàn)演示,探索解決問(wèn)題的方法1.幾何畫(huà)板演示動(dòng)畫(huà)多米諾骨牌游戲,師生共同探討:要讓這些骨牌全部倒下,必須具備那些條件呢?(學(xué)生可以討論,加以教師點(diǎn)撥)①第一塊骨牌必須倒下。②兩塊連續(xù)的骨牌,當(dāng)前一塊倒下,后面一塊必須倒下。(啟發(fā)學(xué)生轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言:當(dāng)?shù)趬K倒下,則第塊必須倒下)教師總結(jié):數(shù)學(xué)歸納法的原理就如同多米諾骨牌一樣。2.學(xué)生類(lèi)比多米諾骨牌原理,探究出證明有關(guān)正整數(shù)命題的方法,從而導(dǎo)出本課的重心:數(shù)學(xué)歸納法的原理及其證明的兩個(gè)步驟。(給學(xué)生思考的時(shí)間,教師提問(wèn),學(xué)生回答,教師補(bǔ)充完善,對(duì)學(xué)生的回答給予肯定和鼓勵(lì))數(shù)學(xué)歸納法公理:(板書(shū))(1)(遞推基礎(chǔ))當(dāng)取第一個(gè)值(例如等)結(jié)論正確;(2)(遞推歸納)假設(shè)當(dāng)時(shí)結(jié)論正確;(歸納假設(shè))證明當(dāng)時(shí)結(jié)論也正確。(歸納證明)那么,命題對(duì)于從開(kāi)始的所有正整數(shù)都成立。教師總結(jié):步驟(1)是數(shù)學(xué)歸納法的基礎(chǔ),步驟(2)建立了遞推過(guò)程,兩者缺一不可,這就是數(shù)學(xué)歸納法。(三)遷移應(yīng)用,理解升華例1:用數(shù)學(xué)歸納法證明:等差數(shù)列中,為首項(xiàng),為公差,則通項(xiàng)公式為.①選題意圖:讓學(xué)生注意:①數(shù)學(xué)歸納法是一種完全歸納的證明方法,它適用于與正整數(shù)有關(guān)的問(wèn)題;②兩個(gè)步驟,一個(gè)結(jié)論缺一不可,否則結(jié)論不成立;③在證明遞推步驟時(shí),必須使用歸納假設(shè),必須進(jìn)行恒等變換。此時(shí)學(xué)生心中已有一個(gè)初步的證明模式,教師應(yīng)該規(guī)范板書(shū),給學(xué)生提供一個(gè)示范。證明:(1)當(dāng)時(shí),等式左邊,等式右邊,等式①成立.(2)假設(shè)當(dāng)時(shí)等式①成立,即有那么,當(dāng)時(shí),有所以當(dāng)時(shí)等式①也成立。根據(jù)(1)和(2),可知對(duì)任何,等式①都成立。例2:用數(shù)學(xué)歸納法證明:當(dāng)時(shí)選題意圖:通過(guò)師生共同活動(dòng),使學(xué)生進(jìn)一步熟悉數(shù)學(xué)歸納法證題的兩個(gè)步驟和一個(gè)結(jié)論。例3:用數(shù)學(xué)歸納法證明:當(dāng)時(shí)選題意圖:①進(jìn)一步讓學(xué)生理解數(shù)學(xué)歸納法的嚴(yán)密性和合理性,從而從感性認(rèn)識(shí)上升為理性認(rèn)識(shí);②掌握從到時(shí)等式左邊的變化情況,合理的進(jìn)行添項(xiàng)、拆項(xiàng)、合并項(xiàng)等。(四)反饋練習(xí),鞏固提高課堂練習(xí):用數(shù)學(xué)歸納法證明:當(dāng)時(shí)(練習(xí)讓學(xué)生獨(dú)立完成,上黑板板演,要求書(shū)寫(xiě)工整,步驟完整,表述清楚,如果發(fā)現(xiàn)學(xué)生證明過(guò)程中的錯(cuò)誤,教師及時(shí)糾正、剖析,同時(shí)對(duì)學(xué)生板演好的方面予以肯定和鼓勵(lì)。)教師總結(jié):利用數(shù)學(xué)歸納法證明和正整數(shù)相關(guān)的命題時(shí),要注意以下三句話:遞推基礎(chǔ)不可少,歸納假設(shè)要用到,結(jié)論寫(xiě)明莫忘掉。(五)反思總結(jié)學(xué)生思考后,教師提問(wèn),讓同學(xué)相互補(bǔ)充完善,教師最后總結(jié),這一環(huán)節(jié)可以培養(yǎng)學(xué)生抽象、歸納、概括、總結(jié)的能力,同時(shí)教師也可以及時(shí)了解學(xué)生的掌握情況,以便彌補(bǔ)和及時(shí)調(diào)整下節(jié)課的教學(xué)方向。小結(jié):(1)歸納法是一種由特殊到一般的推理方法,分完全歸納法和不完全歸納法兩種,而不完全歸納法得出的結(jié)論不具有可靠性,必須用數(shù)學(xué)歸納法進(jìn)行嚴(yán)格證明;(2)數(shù)學(xué)歸納法作為一種證明方法,用于證明一些與正整數(shù)n有關(guān)數(shù)學(xué)命題,它的基本思想是遞推思想,它的證明過(guò)程必須是兩步,最后還有結(jié)論,缺一不可;(3)遞推歸納時(shí)從到,必須用到歸納假設(shè),并進(jìn)行適當(dāng)?shù)暮愕茸儞Q。(六)作業(yè)布置選修2-2習(xí)題2.3第1題第2題數(shù)學(xué)歸納法教學(xué)設(shè)計(jì)2一、關(guān)于教學(xué)目標(biāo)設(shè)計(jì):根據(jù)本節(jié)內(nèi)容的作用、地位以及學(xué)生的具體情況,我把這節(jié)課的教學(xué)目標(biāo)分為以下三個(gè)子目標(biāo):知識(shí)目標(biāo):理解數(shù)學(xué)歸納法的原理和本質(zhì);掌握數(shù)學(xué)歸納法證題的兩個(gè)步驟;會(huì)用“數(shù)學(xué)歸納法”證明簡(jiǎn)單的恒等式。能力目標(biāo):培養(yǎng)學(xué)生觀察、分析、論證能力,進(jìn)一步發(fā)展學(xué)生的抽象思維能力和創(chuàng)新能力。情感目標(biāo):創(chuàng)設(shè)一種愉悅情境,使學(xué)生處于積極思考、大膽質(zhì)疑氛圍,提高學(xué)生學(xué)習(xí)的興趣和課堂效率,激發(fā)學(xué)生學(xué)習(xí)潛能。在情感目標(biāo)的設(shè)計(jì)上我頗費(fèi)一番心思。因?yàn)榍楦心繕?biāo)是無(wú)法定量評(píng)價(jià)的,對(duì)情感目標(biāo)的考察是一個(gè)綜合多方面情況的長(zhǎng)期的過(guò)程。究竟一堂課是否達(dá)到了它應(yīng)給予的情感體驗(yàn),別說(shuō)評(píng)價(jià)者,就是作為教學(xué)對(duì)象的學(xué)生本身,也不會(huì)像學(xué)會(huì)公式、定理的應(yīng)用那樣,明確自己所得。所以,情感目標(biāo)就很容易變成一種擺設(shè),甚至只是教案上的一種點(diǎn)綴,在教學(xué)過(guò)程中被置于從屬或可有可無(wú)的地位。然而,當(dāng)前我國(guó)的教改的實(shí)踐主要是素質(zhì)教育,究其本質(zhì)是對(duì)完整健全人格的追求與培養(yǎng),即強(qiáng)調(diào)教育的人文精神,凸現(xiàn)教育主體的人格特征。我們的教學(xué)對(duì)象不僅是一個(gè)被動(dòng)的認(rèn)知體,更重要、更本質(zhì)的是活生生的生命體。因此我們?cè)谡n堂教學(xué)中必須確立這種人文觀,明確情感目標(biāo)確立的重要性,由傳授知識(shí)向情感培養(yǎng)延伸。數(shù)學(xué)歸納法的知識(shí)內(nèi)容有其獨(dú)特性,我通過(guò)講小故事、學(xué)生動(dòng)手?jǐn)[多米諾骨牌游戲、做評(píng)判者為別人糾錯(cuò)等手段創(chuàng)設(shè)一種愉悅情境,使學(xué)生處于積極思考、大膽質(zhì)疑氛圍,力爭(zhēng)做到提高學(xué)生學(xué)習(xí)的興趣,激發(fā)學(xué)生學(xué)習(xí)潛能。二、關(guān)于學(xué)生學(xué)習(xí)情況分析及教學(xué)重、難點(diǎn)的設(shè)計(jì)學(xué)生在學(xué)習(xí)本節(jié)課之前,已經(jīng)學(xué)習(xí)了用歸納法推導(dǎo)等差數(shù)列、等比數(shù)列的通項(xiàng)公式,但其正確性還有待用數(shù)學(xué)歸納法加以證明,因此數(shù)學(xué)歸納法學(xué)習(xí)是數(shù)列知識(shí)的深入與擴(kuò)展。它既是高中代數(shù)中的一個(gè)重點(diǎn)和難點(diǎn)內(nèi)容,也是一種重要的數(shù)學(xué)方法。學(xué)生在學(xué)習(xí)數(shù)列求通項(xiàng)時(shí),也已經(jīng)具備一定的歸納、猜測(cè)能力,多數(shù)同學(xué)對(duì)數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但在探究問(wèn)題的能力、合作交流的意識(shí)等方面發(fā)展不夠均衡,尚有侍加強(qiáng)。為了避免機(jī)械套用數(shù)學(xué)歸納法證題的兩個(gè)步驟,造成學(xué)生思維的墮性及僵化,因而我把分析數(shù)學(xué)歸納法的原理和實(shí)質(zhì)作為本節(jié)課的重點(diǎn),考慮學(xué)生對(duì)第二步中的遞推思想感到困難,因此把正確理解第二步中的遞推思想作為難點(diǎn)。三、教學(xué)過(guò)程反思:1)課開(kāi)始,情趣生;數(shù)學(xué)歸納法是高中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,新課引入之前,為讓學(xué)生懂得不完全歸納法的不完備性,明確學(xué)習(xí)數(shù)學(xué)歸納法的重要性及喚起學(xué)習(xí)的熱情,我先講了一則民間小故事:地主兒子識(shí)字。大意是:地主花重金請(qǐng)了一名先生教兒子識(shí)字,第一天學(xué)了“一”,第二天學(xué)了“二”,之后,地主兒子想:“一”是一橫,“二”是二橫,那“三”肯定是三橫,第三天果不其然是三橫,于是地主兒子對(duì)地主說(shuō):不必學(xué)了,很簡(jiǎn)單,已經(jīng)全會(huì)了。地主大喜,為吹噓兒子聰明,大擺宴席。席間,一鄉(xiāng)紳想討好地主,就說(shuō)讓地主兒子給他寫(xiě)個(gè)名帖,沒(méi)想到這讓地主兒子出盡了洋相,因?yàn)槟俏秽l(xiāng)紳的名字叫“萬(wàn)百千”。講到這里學(xué)生大笑,笑聲中明確了,不完全歸納法是不可靠的,同時(shí)激起對(duì)“數(shù)學(xué)歸納法”的廬山真面目的好奇,渴望一探究竟。教師通過(guò)故事渲染氣氛,激發(fā)學(xué)生的求知欲望,消除潛在的心理負(fù)擔(dān),使教與學(xué)有良好的匹配。2)課進(jìn)行,情趣濃;新課是從讓學(xué)生玩多米諾骨牌游戲開(kāi)始的。我準(zhǔn)備了一些軍棋子,讓學(xué)生動(dòng)手?jǐn)[放,并完成游戲。然后提出問(wèn)題:多米諾骨牌游戲成功對(duì)骨牌的擺放與操作有什么要求?學(xué)生思考討論,得出多米諾骨牌游戲成功依賴(lài)兩個(gè)條件第一步:第一張牌被推倒,第二步:假若前一張牌被推倒,則后一張牌被推倒。其中第二步用到的就是遞推關(guān)系,如此通過(guò)動(dòng)手、動(dòng)腦,及動(dòng)畫(huà)演示等形象展示遞推關(guān)系,為教學(xué)難點(diǎn)突破提供直觀的的參照物,作感性上的突變,從而分解數(shù)學(xué)歸納法的一個(gè)難點(diǎn)。然后適時(shí)給出數(shù)學(xué)歸納法的定義及步驟。由于學(xué)生始終走在一條充滿輕松、愉悅的學(xué)習(xí)道路上,歸納原理很容易被學(xué)生所接受。例題的證明過(guò)程中,在第二題等差數(shù)列的通項(xiàng)公式的證明中,學(xué)生在證n=k+1命題成立這步時(shí)出現(xiàn)利用結(jié)論證結(jié)論,不用歸納假設(shè)的問(wèn)題。這也是數(shù)學(xué)歸納法中最常見(jiàn)的問(wèn)題。于是,我再一次結(jié)合多米諾骨牌游戲,明確第k+1張骨牌是要被第k張骨牌推倒,才是符合游戲規(guī)則的。因而在應(yīng)用數(shù)學(xué)歸納法證明中,一定做到讓歸納假設(shè)“粉墨登場(chǎng)”,有它的參與證得的n=k+1時(shí)的成立才建立了遞推關(guān)系即邏輯推理鏈,實(shí)現(xiàn)了在驗(yàn)證命題n=n0正確的基礎(chǔ)上,利用命題本身具有傳遞性,運(yùn)用“有限”的手段來(lái)解決“無(wú)限”的問(wèn)題。緊接著,我設(shè)計(jì)了兩個(gè)糾錯(cuò)的題,a)小明認(rèn)為下面的一個(gè)結(jié)論是正確的,且給出了證明,你認(rèn)為這里有無(wú)錯(cuò)誤呢?1+3+5+……+(2n-1)=n2+1(n∈N)證明:假設(shè)n=k(k∈N,k≥1)時(shí)等式成立,即:1+3+5+……+(2k-1)=k2+1,當(dāng)n=k+1時(shí)由假設(shè)得:1+3+5+……+(2k-1)+(2k+1)=k2+1+2k+1=(k+1)2+1,所以當(dāng)n=k+1時(shí)等式也成立??芍?,對(duì)n∈N,原等式都成立。b)用數(shù)學(xué)歸納法證明:1+3+5+……+(2n-1)=n2(n∈N).下面是小強(qiáng)同學(xué)的證法,你認(rèn)為他做得對(duì)嗎?請(qǐng)說(shuō)明理由.證明:①當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立。②假設(shè)n=k(k∈N,k≥1)時(shí)等式成立,即:1+3+5+……+(2k-1)=k2,當(dāng)n=k+1時(shí)由等差數(shù)列前項(xiàng)和公式得:1+3+5+……+(2k-1)+(2k+1)==(k+1)2,所以當(dāng)n=k+1時(shí)等式也成立。由①和②可知,對(duì)n∈N,原等式都成立。這樣安排的目的是讓學(xué)生進(jìn)一步領(lǐng)會(huì)數(shù)學(xué)歸納法的原理和實(shí)質(zhì)3)課結(jié)束,情趣存這節(jié)課的小結(jié)是以“提出問(wèn)題”的方式進(jìn)行的,我設(shè)計(jì)以下問(wèn)題并和學(xué)生共同討論回答。I.數(shù)學(xué)歸納法是怎樣運(yùn)作的?(在驗(yàn)證命題n=n0正確的基礎(chǔ)上,證明命題據(jù)有傳遞性,形成了邏輯推理鏈,以一次邏輯的推理代替了無(wú)限的驗(yàn)證過(guò)程.)II.數(shù)學(xué)歸納法適用于證明什么樣的的.命題?(數(shù)學(xué)歸納法適用于證明:和正整數(shù)有關(guān)的命題。)III.數(shù)學(xué)歸納法基本思想是什么?(在可靠的基礎(chǔ)上利用命題本身具有傳遞性,運(yùn)用“有限”的手段來(lái)解決“無(wú)限”的問(wèn)題。)IV.應(yīng)用數(shù)學(xué)歸納法證明命題所依據(jù)的自然數(shù)的性質(zhì)是什么?(自然數(shù)集的任一非空子集都有最小數(shù)。)V
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門(mén)裝修設(shè)計(jì)合同范本
- 廚房工程漏水合同范本
- 勞務(wù)合同范本文字
- 廠房監(jiān)控維修合同范本
- 農(nóng)機(jī)安全協(xié)議合同范本
- 個(gè)人法人授權(quán)委托書(shū)
- 制作道路標(biāo)牌合同范本
- 廠房燈采購(gòu)安裝合同范本
- 勞動(dòng)單包合同范例
- 工程地質(zhì)與土力學(xué)測(cè)試題(附參考答案)
- 小學(xué)科學(xué)新課標(biāo)科學(xué)課程標(biāo)準(zhǔn)解讀
- 湖南省長(zhǎng)沙市北雅中學(xué)2024-2025學(xué)年九年級(jí)下學(xué)期開(kāi)學(xué)考試英語(yǔ)試題(含答案含聽(tīng)力原文無(wú)音頻)
- 2024年02月北京2024年江蘇銀行北京分行春季校園招考筆試歷年參考題庫(kù)附帶答案詳解
- 2025年駐村個(gè)人工作計(jì)劃
- 重磅!2024年中國(guó)載人飛艇行業(yè)發(fā)展前景及市場(chǎng)空間預(yù)測(cè)報(bào)告(智研咨詢(xún))
- 全球氣候變化與應(yīng)對(duì)措施
- 化工企業(yè)安全生產(chǎn)信息化系統(tǒng)管理解決方案
- 2024廣西公務(wù)員考試及答案(筆試、申論A、B類(lèi)、行測(cè))4套 真題
- AI賦能供應(yīng)鏈優(yōu)化-深度研究
- 小程序代運(yùn)營(yíng)合作協(xié)議
- 中醫(yī)美容養(yǎng)生方法
評(píng)論
0/150
提交評(píng)論