




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024學年湖北省黃岡市晉梅中學高二上數(shù)學期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的長軸長為,短軸長為,則橢圓上任意一點到橢圓中心的距離的取值范圍是()A. B.C. D.2.已知等差數(shù)列,若,,則()A.1 B.C. D.33.已知集合,,則中元素的個數(shù)為()A.3 B.2C.1 D.04.若拋物線x2=8y上一點P到焦點的距離為9,則點P的縱坐標為()A. B.C.6 D.75.已知p:,那么p的一個充分不必要條件是()A. B.C. D.6.胡蘿卜中含有大量的胡蘿卜素,攝入人體消化器官后,可以轉(zhuǎn)化為維生素,現(xiàn)從,兩個品種的胡蘿卜所含的胡蘿卜素(單位:)得到莖葉圖如圖所示,則下列說法不正確的是A. B.的方差大于的方差C.品種的眾數(shù)為 D.品種的中位數(shù)為7.已知橢圓上一點到橢圓一個焦點的距離是3,則點到另一個焦點的距離為()A.9 B.7C.5 D.38.如果,那么下面一定成立的是()A. B.C. D.9.曲線上的點到直線的距離的最小值是()A.3 B.C.2 D.10.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.11.已知是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C若,則 D.若,則12.若雙曲線(,)的焦距為,且漸近線經(jīng)過點,則此雙曲線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列,的前n項和分別為,若,則=______14.設(shè)O為坐標原點,F(xiàn)為雙曲線的焦點,過F的直線l與C的兩條漸近線分別交于A,B兩點.若,且的內(nèi)切圓的半徑為,則C的離心率為____________15.設(shè),滿足約束條件,則的最大值是_________.16.某天上午只排語文、數(shù)學、體育三節(jié)課,則體育不排在第一節(jié)課的概率為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的四個頂點組成的四邊形的面積為,且經(jīng)過點.(1)求橢圓的方程;(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于,兩點,與交于點,四邊形和的面積分別為,,求的最大值.18.(12分)已知橢圓C:的左右焦點分別為,,點P是橢圓C上位于第二象限的任一點,直線l是的外角平分線,過左焦點作l的垂線,垂足為N,延長交直線于點M,(其中O為坐標原點),橢圓C的離心率為(1)求橢圓C的標準方程;(2)過右焦點的直線交橢圓C于A,B兩點,點T在線段AB上,且,點B關(guān)于原點的對稱點為R,求面積的取值范圍.19.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)證明:對任意正整數(shù)n,20.(12分)在平面直角坐標系中,已知拋物線的焦點與橢圓的右焦點重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設(shè)是拋物線上一點,且,求點的坐標21.(12分)已知圓的方程為:.(1)求的值,使圓的周長最??;(2)過作直線,使與滿足(1)中條件的圓相切,求的方程,并求切線段的長.22.(10分)已知橢圓的離心率為,點在橢圓上,直線與交于,兩點(1)求橢圓的方程及焦點坐標;(2)若線段的垂直平分線經(jīng)過點,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】不妨設(shè)橢圓的焦點在軸上,設(shè)點,則,且有,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【題目詳解】不妨設(shè)橢圓的焦點在軸上,則該橢圓的標準方程為,設(shè)點,則,且有,所以,.故選:A.2、C【解題分析】利用等差數(shù)列的通項公式進行求解.【題目詳解】設(shè)等差數(shù)列的公差為,因為,,所以,解得.故選:C.3、B【解題分析】集合中的元素為點集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點組成的集合,集合B表示直線上所有的點組成的集合,又圓與直線相交于兩點,,則中有2個元素.故選B.【名師點睛】求集合的基本運算時,要認清集合元素的屬性(是點集、數(shù)集或其他情形)和化簡集合,這是正確求解集合運算的兩個先決條件.集合中元素的三個特性中的互異性對解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.4、D【解題分析】設(shè)出P的縱坐標,利用拋物線的定義列出方程,求出答案.【題目詳解】由題意得:拋物線準線方程為,P點到拋物線的焦點的距離等于到準線的距離,設(shè)點縱坐標為,則,解得:.故選:D5、C【解題分析】按照充分不必要條件依次判斷4個選項即可.【題目詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.6、C【解題分析】讀懂莖葉圖,分別計算出眾數(shù)、中位數(shù)、方差,然后對各選項進行判斷【題目詳解】由莖葉圖知,品種所含胡蘿卜素普遍高于品種,所以,故A正確;品種的數(shù)據(jù)波動比品種的數(shù)據(jù)波動大,所以的方差大于的方差,故B正確;品種的眾數(shù)為與,故C錯誤;品種的數(shù)據(jù)的中位數(shù)為,故D正確.故選.【題目點撥】本題主要考查了對數(shù)據(jù)的分析,首先要讀懂莖葉圖,然后計算出眾數(shù)、中位數(shù)、方差,即可對各選項進行判斷,較為基礎(chǔ)7、A【解題分析】根據(jù)橢圓定義求得即可.【題目詳解】由橢圓定義知,點P到另一個焦點的距離為2×6-3=9.故選:A8、C【解題分析】根據(jù)不等式的基本性質(zhì),以及特例法和作差比較法,逐項計算,即可求解.【題目詳解】對于A中,當時,,所以不正確;對于B中,因為,根據(jù)不等式的性質(zhì),可得,對于C中,由,可得可得,所以,所以正確;對于D中,由,可得,則,所以,所以不正確.故選:C.9、D【解題分析】求出函數(shù)的導函數(shù),設(shè)切點為,依題意即過切點的切線恰好與直線平行,此時切點到直線的距離最小,求出切點坐標,再利用點到直線的距離公式計算可得;【題目詳解】解:因為,所以,設(shè)切點為,則,解得,所以切點為,點到直線的距離,所以曲線上的點到直線的距離的最小值是;故選:D10、D【解題分析】設(shè)直線傾斜角為,則,即可求出.【題目詳解】設(shè)直線的傾斜角為,則,又因為,所以.故選:D.11、C【解題分析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對四個選項得答案【題目詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C12、B【解題分析】根據(jù)題意得到,,解得答案.【題目詳解】雙曲線(,)的焦距為,故,.且漸近線經(jīng)過點,故,故,雙曲線方程為:.故選:.【題目點撥】本題考查了雙曲線方程,意在考查學生對于雙曲線基本知識的掌握情況.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】利用等差數(shù)列的性質(zhì)和等差數(shù)列的前項和公式可得,再令即可求解.【題目詳解】由等差數(shù)列的性質(zhì)和等差數(shù)列的前項和公式可得:因為,故答案為:【題目點撥】關(guān)鍵點點睛:本題解題的關(guān)鍵是利用等差數(shù)列的性質(zhì)可得,再轉(zhuǎn)化為前項和公式的形式,代入的值即可.14、##【解題分析】,作出漸近線圖像,由題可知的內(nèi)切圓圓心在x軸上,過內(nèi)心作OA和AB的垂線,可得幾何關(guān)系,據(jù)此即可求解.【題目詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關(guān)于x軸對稱,設(shè)△OAB的內(nèi)切圓圓心為,則M在的平分線上,過點分別作于點于,由,則四邊形為正方形,由焦點到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.15、5【解題分析】由題可知表示點與點連線的斜率,再畫出可行域結(jié)合圖像知知.【題目詳解】x,y滿足約束條件,滿足的可行域如圖:則的幾何意義是可行域內(nèi)的點與(﹣3,﹣2)連線的斜率,通過分析圖像得到當經(jīng)過A時,目標函數(shù)取得最大值由可得A(﹣2,3),則的最大值是:故答案為5【題目點撥】(1)在平面直角坐標系內(nèi)作出可行域(2)考慮目標函數(shù)的幾何意義,將目標函數(shù)進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型)(3)確定最優(yōu)解:根據(jù)目標函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解(4)求最值:將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值16、【解題分析】寫出語文、數(shù)學、體育的所有可能排列,找出其中體育不排在第一節(jié)課的情況,利用概率公式計算即可.【題目詳解】所有可能結(jié)果如下:(語文,數(shù)學,體育);(語文,體育,數(shù)學);(數(shù)學,語文,體育):(數(shù)學,體育,語文);(體育,語文,數(shù)學);(體育,數(shù)學,語文),其中體育不排在第一節(jié)課的情況有四種,則體育不排在第一節(jié)課的概率三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)因為在橢圓上,所以,又因為橢圓四個頂點組成的四邊形的面積為,所以,解得,所以橢圓的方程為(2)由(1)可知,設(shè),則當時,,所以,直線的方程為,即,由得,則,,,又,所以,由,得,所以,所以,當,直線,,,,,所以當時,.點睛:在圓錐曲線中研究最值或范圍問題時,若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的關(guān)鍵是在兩個參數(shù)之間建立等量關(guān)系;③利用隱含或已知的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍.18、(1)(2)【解題分析】(1)根據(jù)題意可得到的值,結(jié)合橢圓的離心率,即可求得b,求得答案;(2)由可得,進一步推得,于是設(shè)直線方程和橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得弦長,表示出三角形AOB的面積,利用換元法結(jié)合二次函數(shù)的性質(zhì)求其范圍.【小問1詳解】由題意可知:為的中點,為的中點,為的中位線,,,又,故,即,,又,,,橢圓的標準方程為;【小問2詳解】由題意可知,,,①當過的直線與軸垂直時,,,②當過的直線不與軸垂直時,可設(shè),,直線方程為,聯(lián)立,可得:.,,,由弦長公式可知,到距離為,故,令,則原式變?yōu)?,令,原式變?yōu)楫敃r,故,由①②可知.【題目點撥】本題考查了橢圓方程的求解,以及直線和橢圓相交時的三角形的面積問題,考查學生的計算能力和數(shù)學素養(yǎng),解答的關(guān)鍵是計算三角形面積時要理清運算的思路,準確計算.19、(1)見解析(2)見解析【解題分析】(1)由,令,得,或,又的定義域為,討論兩個根及的大小關(guān)系,即可判定函數(shù)的單調(diào)性;(2)當時,在,上遞減,則,即,由此能夠證明【小問1詳解】的定義域為,,令,得,或,①當,即時,若,則,遞增;若,則,遞減;②當,即時,若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當-2<a<0時,f(x)在,單調(diào)遞減,在單調(diào)遞增;當a≥0時,f(x)在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】由(2)知當時,在,上遞減,,即,,,,2,3,,,,【題目點撥】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,本題的關(guān)鍵是令a=1,用已知函數(shù)的單調(diào)性構(gòu)造,再令x=恰當?shù)乩脤?shù)求和進行解題20、(1);(2);(3)【解題分析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點即為拋物線的焦點,即可求出答案.(3)由拋物線定義可求出點的坐標【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點為,故拋物線的焦點為.拋物線的方程為.【小問3詳解】設(shè)的坐標為,,解得,.故的坐標為.21、(1)(2)直線方程為或,切線段長度為4【解題分析】(1)先求圓的標準方程,由半徑最小則周長最?。唬?)由,則圓的方程為:,直線和圓相切則圓心到直線的距離等于半徑,分直線與軸垂直和直線與軸不垂直兩種情況進行討論即可得解.進一步,利用圓的幾何性質(zhì)可求解切線的長度.【小問1詳解】,配方得:,當時,圓的半徑有最小值2,此時圓的周長最小.【小問2詳解】由(1)得,,圓的方程為:.當直線與軸垂直時,,此時直線與圓相切,符合條件;當直線與軸不垂直時,設(shè)為,由直線與圓相切得:,解得,所以切線方程為,即.綜上,直線方程為或.圓心與點的距離,則切線長度為.22、(1),(2)【解題分析】(1)由題意,列出關(guān)于a,b,c的方程組求解即可得答案;(2)設(shè)M(x1,y1),N(x2,y2),線段MN的中點(x0,y0),則,作差可得①,又線段MN的垂直平分線過點A(0,1),則②,聯(lián)立直線MN與橢圓的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于洗煤合同范例
- 臨時財務用工合同范本
- 各種勞務合同范本
- 中國掀起數(shù)字化浪潮的心得體會
- 醫(yī)學三基康復科模擬練習題
- 勞務合同范本務
- 醫(yī)院房屋建設(shè)施工合同范本
- 醫(yī)藥廠家銷售合同范本
- 美術(shù)基礎(chǔ)習題及參考答案
- 半包家裝合同范本
- 消防設(shè)施維保過程風險及保障措施
- 智能交通系統(tǒng)概論 課件全套 朱文興 第1-10章 緒論 - 城市交通子區(qū)控制系統(tǒng)
- 一鍵自動生成spccpkmsappk數(shù)據(jù)工具
- 2024年湖南省中考英語真題卷及答案解析
- 2024年安防監(jiān)控系統(tǒng)技術(shù)標準與規(guī)范
- 作業(yè)區(qū)鐵路專用線工程項目可行性研究報告
- 2024年黑龍江省綏化市中考物理試題含答案
- 七年級下學期生物蘇教版電子教材
- 肺病科中醫(yī)特色護理
- 醫(yī)院培訓課件:《靜脈中等長度導管臨床應用專家共識》
- 智能倉儲物流系統(tǒng)開發(fā)合同
評論
0/150
提交評論