商務(wù)統(tǒng)計(jì) 美譚英平等譯_第1頁(yè)
商務(wù)統(tǒng)計(jì) 美譚英平等譯_第2頁(yè)
商務(wù)統(tǒng)計(jì) 美譚英平等譯_第3頁(yè)
商務(wù)統(tǒng)計(jì) 美譚英平等譯_第4頁(yè)
商務(wù)統(tǒng)計(jì) 美譚英平等譯_第5頁(yè)
已閱讀5頁(yè),還剩816頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

[美]AmirD.Aczel,JayavelSounderpandian著,譚英平等譯商務(wù)統(tǒng)計(jì)Chapter1IntroductionandDescriptiveStatisticsUsingStatisticsPercentilesandQuartilesMeasuresofCentralTendencyMeasuresofVariabilityGroupedDataandtheHistogramSkewnessandKurtosisRelationsbetweentheMeanandStandardDeviationMethodsofDisplayingDataExploratoryDataAnalysisUsingtheComputerIntroductionandDescriptiveStatistics1Distinguishbetweenqualitativedataandquantitativedata.Describenominal,ordinal,interval,andratioscalesofmeasurements.Describethedifferencebetweenpopulationandsample.Calculateandinterpretpercentilesandquartiles.Explainmeasuresofcentraltendencyandhowtocomputethem.Createdifferenttypesofchartsthatdescribedatasets.UseExceltemplatestocomputevariousmeasuresandcreatecharts.

LEARNINGOBJECTIVES1Afterstudyingthischapter,youshouldbeableto:Statisticsisasciencethathelpsusmakebetterdecisionsinbusinessandeconomicsaswellasinotherfields.Statisticsteachesushowtosummarize,analyze,anddrawmeaningfulinferencesfromdatathatthenleadtoimprovedecisions.Thesedecisionsthatwemakehelpusimprovetherunning,forexample,adepartment,acompany,theentireeconomy,etc.WHATISSTATISTICS?1-1.UsingStatistics(TwoCategories)InferentialStatisticsPredictandforecastvaluesofpopulationparametersTesthypothesesaboutvaluesofpopulationparametersMakedecisionsDescriptiveStatisticsCollectOrganizeSummarizeDisplayAnalyzeQualitative-CategoricalorNominal:

Examplesare-ColorGenderNationalityQuantitative-MeasurableorCountable:

Examplesare-TemperaturesSalariesNumberofpointsscoredona100

pointexamTypesofData-TwoTypesNominalScale

-groupsorclassesGenderOrdinalScale

-ordermattersRanks(toptenvideos)IntervalScale

-differenceordistancematters–hasarbitraryzerovalue.Temperatures(0F,0C)RatioScale

-Ratiomatters–hasanaturalzerovalue.SalariesScalesofMeasurementA

populationconsistsofthesetofallmeasurementsforwhichtheinvestigatorisinterested.A

sample

isasubsetofthemeasurementsselectedfromthepopulation.A

census

isacompleteenumerationofeveryiteminapopulation.SamplesandPopulationsSampling

fromthepopulationisoftendone

randomly,suchthateverypossiblesampleofequalsize(n)willhaveanequalchanceofbeingselected.Asampleselectedinthiswayiscalledasimplerandomsampleorjustarandomsample.Arandomsampleallowschancetodetermineitselements.SimpleRandomSamplePopulation(N)Sample(n)SamplesandPopulationsCensusofapopulationmaybe:Impossible ImpracticalToocostlyWhySample?Givenanysetofnumericalobservations,orderthemaccordingtomagnitude.ThePth

percentile

intheorderedsetisthatvaluebelowwhichlieP%(Ppercent)oftheobservationsintheset.ThepositionofthePthpercentileisgivenby(n+1)P/100,wherenisthenumberofobservationsintheset.1-2PercentilesandQuartiles

Alargedepartmentstorecollectsdataonsalesmadebyeachofitssalespeople.Thenumberofsalesmadeonagivendaybyeachof

20

salespeopleisshownonthenextslide.Also,thedatahasbeensortedinmagnitude.

Example1-2Example1-2(Continued)-

SalesandSortedSales

Sales

SortedSales

9 6 6 9 12 10 10 12 13 13 15 14 16 14 14 15 14 16 16 16 17 16 16 17 24 17 21 18 22 18 18 19 19 20 18 21 20 22 17 24

Findthe50th,80th,andthe90th

percentilesofthisdataset.Tofindthe50th

percentile,determinethedatapointinposition(n+1)P/100=(20+1)(50/100)

=10.5.Thus,thepercentileislocatedatthe10.5th

position.The10thobservationis16,andthe11th

observationisalso16.The50thpercentilewillliehalfwaybetweenthe10th

and11th

values(whichareboth16inthiscase)andisthus16.

Example1-2(Continued)Percentiles

Tofindthe80thpercentile,determinethedatapointinposition(n+1)P/100=(20+1)(80/100)=16.8.Thus,thepercentileislocatedatthe16.8th

position.The16th

observationis19,andthe17th

observationisalso20.The80thpercentileisapointlying0.8ofthewayfrom19to20andisthus19.8.

Example1-2(Continued)Percentiles

Tofindthe90thpercentile,determinethedatapointinposition(n+1)P/100=(20+1)(90/100)=18.9.Thus,thepercentileislocatedatthe18.9th

position.The18th

observationis21,andthe19th

observationisalso22.The90thpercentileisapointlying0.9ofthe

wayfrom21to22andisthus21.9.

Example1-2(Continued)Percentiles

Quartilesarethepercentagepointsthatbreakdowntheordereddatasetintoquarters.Thefirstquartileisthe25thpercentile.Itisthepointbelowwhichlie1/4ofthedata.Thesecondquartileisthe50thpercentile.Itisthepointbelowwhichlie1/2ofthedata.Thisisalsocalledthemedian.Thethirdquartileisthe75thpercentile.Itisthepointbelowwhichlie3/4ofthedata.

Quartiles–SpecialPercentiles

Thefirstquartile,Q1,(25thpercentile)is

oftencalledthelowerquartile.Thesecondquartile,Q2,(50th

percentile)isoftencalledthemedian

orthemiddlequartile.Thethirdquartile,Q3,(75thpercentile)

isoftencalledtheupperquartile.Theinterquartilerangeisthedifference

betweenthefirstandthethirdquartiles.

QuartilesandInterquartileRange

SortedSales Sales 96 6 9 12 10 10 12 13 13 15 14 16 14 14 15 14 16 16 16 17 16 16 17 24 17 21 18 22 18 18 19 19 20 18 21 20 22 17 24 FirstQuartileMedianThirdQuartile(n+1)P/100(20+1)25/100=5.25(20+1)50/100=10.5(20+1)75/100=15.7513+(.25)(1)=13.2516+(.5)(0)=1618+(.75)(1)=18.75QuartilesExample1-3:FindingQuartilesPosition(n+1)P/100QuartilesExample1-3:UsingtheTemplate(n+1)P/100QuartilesExample1-3(Continued):UsingtheTemplateThisisthelowerpartofthesametemplatefromthepreviousslide.MeasuresofVariabilityRangeInterquartilerangeVarianceStandardDeviationMeasuresofCentralTendencyMedianModeMeanOthersummarymeasures:SkewnessKurtosisSummaryMeasures:PopulationParametersSampleStatisticsMedianMiddlevaluewhensortedinorderofmagnitude50thpercentileModeMostfrequently-occurringvalueMeanAverage1-3MeasuresofCentralTendency

orLocationSales SortedSales

9 6 6 9 12 10 10 12 13 13 15 14 16 14 14 15 14 16 16 16 17 16 16 17 24 17 21 18 22 18 18 19 19 20 18 21 20 22 17 24 MedianMedian50thPercentile(20+1)50/100=10.516+(.5)(0)=16Themedianisthemiddlevalueofdatasortedinorderofmagnitude.Itisthe50thpercentile.Example–Median(DataisusedfromExample1-2)Seeslide#21forthetemplateoutput

.

.

..

.

.

:.

:

:

:

.

.

.

.

.

---------------------------------------------------------------6910121314151617181920212224Mode=16Themodeisthemostfrequentlyoccurringvalue.Itisthevaluewiththehighestfrequency.Example-Mode(DataisusedfromExample1-2)Seeslide#21forthetemplateoutputThemeanofasetofobservationsistheiraverage-thesumoftheobservedvaluesdividedbythenumberofobservations.PopulationMeanSampleMeanm==?xNiN1xxnin==?1ArithmeticMeanorAveragexxnin====?1317201585.Sales

96121013151614141617162421221819182017317Example–Mean(DataisusedfromExample1-2)Seeslide#21forthetemplateoutput

.

.

..

.

.

:.

:

:

:

.

.

.

.

.

---------------------------------------------------------------6910121314151617181920212224MedianandMode=16Mean=15.85Example-Mode(DataisusedfromExample1-2)Seeslide#21forthetemplateoutputRangeDifferencebetweenmaximumandminimumvaluesInterquartileRangeDifferencebetweenthirdandfirstquartile(Q3-Q1)VarianceAverage*ofthesquareddeviationsfromthemeanStandardDeviationSquarerootofthevarianceDefinitionsofpopulationvarianceandsamplevariancedifferslightly.1-4MeasuresofVariabilityorDispersion

SortedSales Sales Rank9 6 16 9 212 10 310 12 413 13 515 14 616 14 714 15 814 16 916 16 1017 16 1116 17 1224 17 1321 18 1422 18 1518 19 1619 20 1718 21 1820 22 1917 24 20FirstQuartileThirdQuartileQ1=13+(.25)(1)=13.25Q3=18+(.75)(1)=18.75MinimumMaximumRange:Maximum-Minimum=

24-6=18InterquartileRange:Q3-Q1=

18.75-13.25=5.5Example-RangeandInterquartileRange(DataisusedfromExample1-2)Seeslide#21forthetemplateoutputVarianceandStandardDeviation()smss22121221=-=-===??=?()xNxNNiNiNxiNPopulationVariance()()sxxnxxnnssininin2212122111=-?-=-?-====?()SampleVariance()

6 -9.85 97.0225 369 -6.85 46.9225 8110 -5.85 34.2225 10012 -3.85 14.8225 14413 -2.85 8.122516914 -1.85 3.4225 19614 -1.85 3.4225 19615 -0.85 0.7225 22516 0.15 0.0225 25616 0.15 0.0225 25616 0.15 0.0225 25617 1.15 1.3225 28917 1.15 1.3225 28918 2.15 4.6225 32418 2.15 4.6225 32419 3.15 9.9225 36120 4.15 17.2225 40021 5.15 26.5225 44122 6.15 37.8225 48424 8.15 66.4225 576317 0 378.55005403CalculationofSampleVariance(n+1)P/100QuartilesExample:SampleVarianceUsingtheTemplateNote:Thisisjustareplicationofslide#21.DividingdataintogroupsorclassesorintervalsGroupsshouldbe:MutuallyexclusiveNotoverlapping-everyobservationisassignedtoonlyonegroupExhaustiveEveryobservationisassignedtoagroupEqual-width

(ifpossible)Firstorlastgroupmaybeopen-ended1-5GroupDataandtheHistogramTablewithtwocolumnslisting:EachandeverygrouporclassorintervalofvaluesAssociatedfrequencyofeachgroupNumberofobservationsassignedtoeachgroupSumoffrequenciesisnumberofobservationsNforpopulationnforsampleClass

midpoint

isthemiddlevalueofagrouporclassorintervalRelativefrequency

isthepercentageoftotalobservationsineachclassSumofrelativefrequencies=1FrequencyDistribution x f(x) f(x)/nSpendingClass($) Frequency(numberofcustomers) RelativeFrequency0tolessthan100 30 0.163100tolessthan200 38 0.207200tolessthan300 50 0.272300tolessthan400 31 0.168400tolessthan500 22 0.120500tolessthan600 13 0.070 184 1.000

Exampleofrelativefrequency:30/184=0.163Sumofrelativefrequencies=1Example1-7:FrequencyDistribution x F(x) F(x)/nSpendingClass($) CumulativeFrequency CumulativeRelativeFrequency0tolessthan100 30 0.163100tolessthan200 68 0.370200tolessthan300 118 0.641300tolessthan400 149 0.810400tolessthan500 171 0.929500tolessthan600 184 1.000

Thecumulativefrequency

ofeachgroupisthesumofthefrequenciesofthatandallprecedinggroups.CumulativeFrequencyDistributionA

histogram

isachartmadeofbarsofdifferentheights.WidthsandlocationsofbarscorrespondtowidthsandlocationsofdatagroupingsHeightsofbarscorrespondtofrequenciesorrelativefrequenciesofdatagroupingsHistogramFrequencyHistogramHistogramExampleRelativeFrequencyHistogramHistogramExampleSkewnessMeasureofasymmetryofafrequencydistributionSkewedtoleftSymmetricorunskewedSkewedtorightKurtosisMeasureofflatnessorpeakednessofafrequencydistributionPlatykurtic(relativelyflat)Mesokurtic(normal)Leptokurtic(relativelypeaked)1-6SkewnessandKurtosisSkewedtoleftSkewnessSkewnessSymmetricSkewnessSkewedtorightKurtosisPlatykurtic-flatdistributionKurtosisMesokurtic-nottooflatandnottoopeakedKurtosisLeptokurtic

-peakeddistributionChebyshev’sTheoremAppliestoany

distribution,regardlessofshapePlaceslowerlimitsonthepercentagesofobservationswithinagivennumberofstandarddeviationsfromthemeanEmpiricalRuleAppliesonlytoroughlymound-shapedandsymmetricdistributionsSpecifiesapproximatepercentagesofobservationswithinagivennumberofstandarddeviationsfromthemean1-7RelationsbetweentheMeanandStandardDeviationAtleastoftheelementsofany

distributionliewithinkstandarddeviationsofthemean

Atleast

LiewithinStandarddeviationsofthemean234Chebyshev’sTheoremForroughlymound-shapedandsymmetricdistributions,approximately:EmpiricalRulePieChartsCategoriesrepresentedaspercentagesoftotalBarGraphsHeightsofrectanglesrepresentgroupfrequenciesFrequencyPolygons

HeightoflinerepresentsfrequencyOgivesHeightoflinerepresentscumulativefrequencyTimePlotsRepresentsvaluesovertime1-8MethodsofDisplayingDataPieChartBarChart

RelativeFrequencyPolygonOgiveFrequencyPolygonandOgive504030201000.30.20.10.0RelativeFrequencySales504030201001.00.50.0CumulativeRelativeFrequencySales(Cumulativefrequencyorrelativefrequencygraph)OSAJJMAMFJDNOSAJJMAMFJDNOSAJJMAMFJ8.57.56.55.5MonthMillions

of

TonsMonthly

Steel

Production

TimePlotStem-and-LeafDisplaysQuick-and-dirtylistingofallobservationsConveyssomeofthesameinformationasahistogramBoxPlotsMedianLowerandupperquartilesMaximumandminimumTechniquestodeterminerelationshipsandtrends,identifyoutliersandinfluentialobservations,andquicklydescribeorsummarizedatasets.1-9ExploratoryDataAnalysis-EDA

1122355567

201112223467778993012457411257

50236

602Example1-8:Stem-and-LeafDisplayFigure1-17:TaskPerformanceTimesXX*oMedianQ1Q3InnerFenceInnerFenceOuterFenceOuterFenceInterquartileRangeSmallestdatapointnotbelowinnerfenceLargestdatapointnotexceedinginnerfenceSuspectedoutlierOutlierQ1-3(IQR)Q1-1.5(IQR)Q3+1.5(IQR)Q3+3(IQR)ElementsofaBoxPlotBoxPlotExample:BoxPlot1-10UsingtheComputer–TheTemplateOutputwithBasicStatisticsUsingtheComputer–TemplateOutputfortheHistogramFigure1-24UsingtheComputer–TemplateOutputforHistogramsforGroupedDataFigure1-25UsingtheComputer–TemplateOutputforFrequencyPolygons&theOgiveforGroupedDataFigure1-25UsingtheComputer–TemplateOutputforTwoFrequencyPolygonsforGroupedDataFigure1-26UsingtheComputer–PieChartTemplateOutputFigure1-27UsingtheComputer–BarChartTemplateOutputFigure1-28UsingtheComputer–BoxPlotTemplateOutputFigure1-29UsingtheComputer–BoxPlotTemplatetoCompareTwoDataSetsFigure1-30UsingtheComputer–TimePlotTemplate

Figure1-31UsingtheComputer–TimePlotComparisonTemplate

Figure1-32ScatterPlotsScatterPlotsareusedtoidentifyandreportanyunderlyingrelationshipsamongpairsofdatasets.Theplotconsistsofascatterofpoints,eachpointrepresentinganobservation.ScatterPlots

Scatterplotwithtrendline.Thistypeofrelationshipisknownasapositivecorrelation.Correlationwillbediscussedinlaterchapters.COMPLETE

BUSINESS

STATISTICSbyAMIRD.ACZEL&JAYAVELSOUNDERPANDIAN6thedition.Chapter2ProbabilityUsingStatisticsBasicDefinitions:Events,SampleSpace,andProbabilitiesBasicRulesforProbabilityConditionalProbabilityIndependenceofEventsCombinatorialConceptsTheLawofTotalProbabilityandBayes’TheoremJointProbabilityTableUsingtheComputerProbability2Defineprobability,samplespace,andevent.Distinguishbetweensubjectiveandobjectiveprobability.Describethecomplementofanevent,theintersection,andtheunionoftwoevents.Computeprobabilitiesofvarioustypesofevents.Explaintheconceptofconditionalprobabilityandhowtocomputeit.Describepermutationandcombinationandtheiruseincertainprobabilitycomputations.ExplainBayes’theoremanditsapplications.LEARNINGOBJECTIVESAfterstudyingthischapter,youshouldbeableto:22-1Probabilityis:AquantitativemeasureofuncertaintyAmeasureofthestrengthofbelief

intheoccurrenceofanuncertaineventAmeasureofthedegreeofchanceorlikelihoodofoccurrence

ofanuncertaineventMeasuredbyanumberbetween0and1(orbetween0%and100%)TypesofProbability

ObjectiveorClassicalProbabilitybasedonequally-likelyeventsbasedonlong-runrelativefrequencyofeventsnotbasedonpersonalbeliefsisthesameforallobservers(objective)examples:tossacoin,throwadie,pickacardTypesofProbability(Continued)SubjectiveProbabilitybasedonpersonalbeliefs,experiences,prejudices,intuition-personaljudgmentdifferentforallobservers(subjective)examples:SuperBowl,elections,newproductintroduction,snowfallSet-acollectionofelementsorobjectsofinterestEmptyset(denotedby)

asetcontainingnoelementsUniversalset(denotedbyS)asetcontainingallpossibleelementsComplement(Not).ThecomplementofAisasetcontainingallelementsofSnotinA2-2BasicDefinitionsComplementofaSetASVennDiagramillustratingtheComplementofaneventIntersection

(And)asetcontainingallelementsinbothAandBUnion

(Or)asetcontainingallelementsinAorBorbothBasicDefinitions(Continued)Sets:AIntersectingwithBABSSets:AUnionBABSMutuallyexclusiveordisjointsetssetshavingnoelementsincommon,havingnointersection,whoseintersectionistheemptysetPartitionacollectionofmutuallyexclusivesetswhichtogetherincludeallpossibleelements,whoseunionistheuniversalsetBasicDefinitions(Continued)MutuallyExclusiveorDisjointSetsABSSetshavenothingincommonSets:PartitionA1A2A3A4A5SProcessthatleadstooneofseveralpossibleoutcomes

*,e.g.:CointossHeads,TailsThrowdie1,2,3,4,5,6PickacardAH,KH,QH,...IntroduceanewproductEachtrialofanexperimenthasasingleobservedoutcome.Thepreciseoutcomeofarandomexperimentisunknownbeforeatrial.

*Alsocalledabasicoutcome,elementaryevent,orsimpleeventExperimentSampleSpaceorEventSetSetofallpossibleoutcomes(universalset)foragivenexperimentE.g.:Rollaregularsix-sideddieS={1,2,3,4,5,6}EventCollectionofoutcomeshavingacommoncharacteristicE.g.:Evennumber

A={2,4,6}

EventAoccursifanoutcomeinthesetAoccursProbabilityofaneventSumoftheprobabilitiesoftheoutcomesofwhichitconsistsP(A)=P(2)+P(4)+P(6)Events:DefinitionForexample:ThrowadieSixpossibleoutcomes{1,2,3,4,5,6}Ifeachisequally-likely,theprobabilityofeachis1/6=0.1667=16.67%

Probabilityofeachequally-likelyoutcomeis1dividedbythenumberofpossibleoutcomesEventA(evennumber)P(A)=P(2)+P(4)+P(6)=1/6+1/6+1/6=1/2foreinAEqually-likelyProbabilities

(HypotheticalorIdealExperiments)PickaCard:SampleSpaceEvent‘Ace’UnionofEvents‘Heart’and‘Ace’Event‘Heart’Theintersectionoftheevents‘Heart’and‘Ace’comprisesthesinglepointcircledtwice:theaceofheartsHeartsDiamondsClubsSpadesAAAAKKKKQQQQJJJJ1010101099998888777766665555444433332222RangeofValuesforP(A):Complements

-Probabilityof

not

AIntersection

-ProbabilityofbothA

and

BMutuallyexclusiveevents(AandC):2-3BasicRulesforProbabilityUnion

-ProbabilityofAor

Borboth(ruleofunions)Mutuallyexclusiveevents:IfAandBaremutuallyexclusive,thenBasicRulesforProbability(Continued)Sets:P(AUnionB)ABSConditionalProbability

-ProbabilityofAgivenBIndependentevents:2-4ConditionalProbabilityRulesofconditionalprobability:IfeventsAandDarestatisticallyindependent:sosoConditionalProbability(continued)AT&TIBMTotalTelecommunication401050Computers203050Total6040100CountsAT&TIBMTotalTelecommunication.40.10.50Computers.20.30.50Total.60.401.00ProbabilitiesProbabilitythataprojectisundertakenbyIBMgivenitisatelecommunicationsproject:ContingencyTable-Example2-2ConditionsforthestatisticalindependenceofeventsAandB:2-5IndependenceofEventsEventsTelevision(T)andBillboard(B)areassumedtobeindependent.IndependenceofEvents–

Example2-5Theprobabilityoftheunionofseveralindependenteventsis1minustheproductofprobabilitiesoftheircomplements:Example2-7:Theprobabilityoftheintersectionofseveralindependenteventsistheproductoftheirseparateindividualprobabilities:ProductRulesforIndependentEventsConsiderapairofsix-sideddice.Therearesixpossibleoutcomesfromthrowingthefirstdie{1,2,3,4,5,6}andsixpossibleoutcomesfromthrowingtheseconddie{1,2,3,4,5,6}.Altogether,thereare6*6=36possibleoutcomesfromthrowingthetwodice.Ingeneral,ifthereareneventsandtheeventicanhappeninNipossibleways,thenthenumberofwaysinwhichthesequenceofneventsmayoccurisN1N2...Nn.Pick5cardsfromadeckof52-withreplacement52*52*52*52*52=525380,204,032differentpossibleoutcomesPick5cardsfromadeckof52-withoutreplacement52*51*50*49*48=311,875,200differentpossibleoutcomes2-6CombinatorialConcepts.....Ordertheletters:A,B,andCABCBCABACACBCBA...........ABCACBBACBCACABCBAMoreonCombinatorialConcepts

(TreeDiagram)Howmanywayscanyouorderthe3lettersA,B,andC?Thereare3choicesforthefirstletter,2forthesecond,and1forthelast,sothereare3*2*1=6possiblewaystoorderthethreelettersA,B,andC.Howmanywaysaretheretoorderthe6lettersA,B,C,D,E,andF?(6*5*4*3*2*1=720)Factorial:Foranypositiveintegern,wedefinenfactorial

as:n(n-1)(n-2)...(1).Wedenotenfactorialasn!.Thenumbern!isthenumberofwaysinwhichnobjectscanbeordered.Bydefinition1!=1and0!=1.FactorialPermutationsarethepossibleorderedselectionsofrobjectsoutofatotalofnobjects.ThenumberofpermutationsofnobjectstakenratatimeisdenotedbynPr,whereWhatifwechoseonly3outofthe6lettersA,B,C,D,E,andF?Thereare6waystochoosethefirstletter,5waystochoosethesecondletter,and4waystochoosethethirdletter(leaving3lettersunchosen).Thatmakes6*5*4=120possibleorderingsorpermutations.Permutations(Orderisimportant)Combinations

arethepossibleselectionsofritemsfromagroupofnitemsregardlessoftheorderofselection.Thenumberofcombinationsisdenotedandisreadasnchooser.AnalternativenotationisnCr.Wedefinethenumberofcombinationsofroutofnelementsas:Supposethatwhenwepick3lettersoutofthe6lettersA,B,C,D,E,andFwechoseBCD,orBDC,orCBD,orCDB,orDBC,orDCB.(Thesearethe6(3!)permutationsororderingsofthe3lettersB,C,andD.)Buttheseareorderingsofthesamecombinationof3letters.Howmanycombinationsof6differentletters,taking3atatime,arethere?Combinations(OrderisnotImportant)Example:TemplateforCalculatingPermutations&CombinationsIntermsofconditionalprobabilities:Moregenerally(whereBimakeupapartition):2-7TheLawofTotalProbabilityandBayes’TheoremThelawoftotalprobability:EventU:StockmarketwillgoupinthenextyearEventW:EconomywilldowellinthenextyearTheLawofTotalProbability-

Example2-9Bayes’theoremenablesyou,knowingjustalittlemorethantheprobabilityofAgivenB,tofindtheprobabilityofBgivenA.Basedonthedefinitionofconditionalprobabilityandthelawoftotalprobability.ApplyingthelawoftotalprobabilitytothedenominatorApplyingthedefinitionofconditionalprobabilitythroughoutBayes’TheoremAmedicaltestforararedisease(affecting0.1%ofthepopulation[])isimperfect:Whenadministeredtoanillperson,thetestwillindicatesowithprobability0.92[]TheeventisafalsenegativeWhenadministeredtoapersonwhoisnotill,thetestwillerroneouslygiveapositiveresult(falsepositive)withprobability0.04[]Theeventisafalsepositive..Bayes’Theorem-Example2-10Example2-10(continued)PriorProbabilitiesConditionalProbabilitiesJointProbabilitiesExample2-10(TreeDiagram)GivenapartitionofeventsB1,B2,...,Bn:ApplyingthelawoftotalprobabilitytothedenominatorApplyingthedefinitionofconditionalprobabilitythroughoutBayes’TheoremExtendedAneconomistbelievesthatduringperiodsofhigheconomicgrowth,theU.S.dollarappreciateswithprobability0.70;inperio

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論