




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
[美]AmirD.Aczel,JayavelSounderpandian著,譚英平等譯商務(wù)統(tǒng)計(jì)Chapter1IntroductionandDescriptiveStatisticsUsingStatisticsPercentilesandQuartilesMeasuresofCentralTendencyMeasuresofVariabilityGroupedDataandtheHistogramSkewnessandKurtosisRelationsbetweentheMeanandStandardDeviationMethodsofDisplayingDataExploratoryDataAnalysisUsingtheComputerIntroductionandDescriptiveStatistics1Distinguishbetweenqualitativedataandquantitativedata.Describenominal,ordinal,interval,andratioscalesofmeasurements.Describethedifferencebetweenpopulationandsample.Calculateandinterpretpercentilesandquartiles.Explainmeasuresofcentraltendencyandhowtocomputethem.Createdifferenttypesofchartsthatdescribedatasets.UseExceltemplatestocomputevariousmeasuresandcreatecharts.
LEARNINGOBJECTIVES1Afterstudyingthischapter,youshouldbeableto:Statisticsisasciencethathelpsusmakebetterdecisionsinbusinessandeconomicsaswellasinotherfields.Statisticsteachesushowtosummarize,analyze,anddrawmeaningfulinferencesfromdatathatthenleadtoimprovedecisions.Thesedecisionsthatwemakehelpusimprovetherunning,forexample,adepartment,acompany,theentireeconomy,etc.WHATISSTATISTICS?1-1.UsingStatistics(TwoCategories)InferentialStatisticsPredictandforecastvaluesofpopulationparametersTesthypothesesaboutvaluesofpopulationparametersMakedecisionsDescriptiveStatisticsCollectOrganizeSummarizeDisplayAnalyzeQualitative-CategoricalorNominal:
Examplesare-ColorGenderNationalityQuantitative-MeasurableorCountable:
Examplesare-TemperaturesSalariesNumberofpointsscoredona100
pointexamTypesofData-TwoTypesNominalScale
-groupsorclassesGenderOrdinalScale
-ordermattersRanks(toptenvideos)IntervalScale
-differenceordistancematters–hasarbitraryzerovalue.Temperatures(0F,0C)RatioScale
-Ratiomatters–hasanaturalzerovalue.SalariesScalesofMeasurementA
populationconsistsofthesetofallmeasurementsforwhichtheinvestigatorisinterested.A
sample
isasubsetofthemeasurementsselectedfromthepopulation.A
census
isacompleteenumerationofeveryiteminapopulation.SamplesandPopulationsSampling
fromthepopulationisoftendone
randomly,suchthateverypossiblesampleofequalsize(n)willhaveanequalchanceofbeingselected.Asampleselectedinthiswayiscalledasimplerandomsampleorjustarandomsample.Arandomsampleallowschancetodetermineitselements.SimpleRandomSamplePopulation(N)Sample(n)SamplesandPopulationsCensusofapopulationmaybe:Impossible ImpracticalToocostlyWhySample?Givenanysetofnumericalobservations,orderthemaccordingtomagnitude.ThePth
percentile
intheorderedsetisthatvaluebelowwhichlieP%(Ppercent)oftheobservationsintheset.ThepositionofthePthpercentileisgivenby(n+1)P/100,wherenisthenumberofobservationsintheset.1-2PercentilesandQuartiles
Alargedepartmentstorecollectsdataonsalesmadebyeachofitssalespeople.Thenumberofsalesmadeonagivendaybyeachof
20
salespeopleisshownonthenextslide.Also,thedatahasbeensortedinmagnitude.
Example1-2Example1-2(Continued)-
SalesandSortedSales
Sales
SortedSales
9 6 6 9 12 10 10 12 13 13 15 14 16 14 14 15 14 16 16 16 17 16 16 17 24 17 21 18 22 18 18 19 19 20 18 21 20 22 17 24
Findthe50th,80th,andthe90th
percentilesofthisdataset.Tofindthe50th
percentile,determinethedatapointinposition(n+1)P/100=(20+1)(50/100)
=10.5.Thus,thepercentileislocatedatthe10.5th
position.The10thobservationis16,andthe11th
observationisalso16.The50thpercentilewillliehalfwaybetweenthe10th
and11th
values(whichareboth16inthiscase)andisthus16.
Example1-2(Continued)Percentiles
Tofindthe80thpercentile,determinethedatapointinposition(n+1)P/100=(20+1)(80/100)=16.8.Thus,thepercentileislocatedatthe16.8th
position.The16th
observationis19,andthe17th
observationisalso20.The80thpercentileisapointlying0.8ofthewayfrom19to20andisthus19.8.
Example1-2(Continued)Percentiles
Tofindthe90thpercentile,determinethedatapointinposition(n+1)P/100=(20+1)(90/100)=18.9.Thus,thepercentileislocatedatthe18.9th
position.The18th
observationis21,andthe19th
observationisalso22.The90thpercentileisapointlying0.9ofthe
wayfrom21to22andisthus21.9.
Example1-2(Continued)Percentiles
Quartilesarethepercentagepointsthatbreakdowntheordereddatasetintoquarters.Thefirstquartileisthe25thpercentile.Itisthepointbelowwhichlie1/4ofthedata.Thesecondquartileisthe50thpercentile.Itisthepointbelowwhichlie1/2ofthedata.Thisisalsocalledthemedian.Thethirdquartileisthe75thpercentile.Itisthepointbelowwhichlie3/4ofthedata.
Quartiles–SpecialPercentiles
Thefirstquartile,Q1,(25thpercentile)is
oftencalledthelowerquartile.Thesecondquartile,Q2,(50th
percentile)isoftencalledthemedian
orthemiddlequartile.Thethirdquartile,Q3,(75thpercentile)
isoftencalledtheupperquartile.Theinterquartilerangeisthedifference
betweenthefirstandthethirdquartiles.
QuartilesandInterquartileRange
SortedSales Sales 96 6 9 12 10 10 12 13 13 15 14 16 14 14 15 14 16 16 16 17 16 16 17 24 17 21 18 22 18 18 19 19 20 18 21 20 22 17 24 FirstQuartileMedianThirdQuartile(n+1)P/100(20+1)25/100=5.25(20+1)50/100=10.5(20+1)75/100=15.7513+(.25)(1)=13.2516+(.5)(0)=1618+(.75)(1)=18.75QuartilesExample1-3:FindingQuartilesPosition(n+1)P/100QuartilesExample1-3:UsingtheTemplate(n+1)P/100QuartilesExample1-3(Continued):UsingtheTemplateThisisthelowerpartofthesametemplatefromthepreviousslide.MeasuresofVariabilityRangeInterquartilerangeVarianceStandardDeviationMeasuresofCentralTendencyMedianModeMeanOthersummarymeasures:SkewnessKurtosisSummaryMeasures:PopulationParametersSampleStatisticsMedianMiddlevaluewhensortedinorderofmagnitude50thpercentileModeMostfrequently-occurringvalueMeanAverage1-3MeasuresofCentralTendency
orLocationSales SortedSales
9 6 6 9 12 10 10 12 13 13 15 14 16 14 14 15 14 16 16 16 17 16 16 17 24 17 21 18 22 18 18 19 19 20 18 21 20 22 17 24 MedianMedian50thPercentile(20+1)50/100=10.516+(.5)(0)=16Themedianisthemiddlevalueofdatasortedinorderofmagnitude.Itisthe50thpercentile.Example–Median(DataisusedfromExample1-2)Seeslide#21forthetemplateoutput
.
.
..
.
.
:.
:
:
:
.
.
.
.
.
---------------------------------------------------------------6910121314151617181920212224Mode=16Themodeisthemostfrequentlyoccurringvalue.Itisthevaluewiththehighestfrequency.Example-Mode(DataisusedfromExample1-2)Seeslide#21forthetemplateoutputThemeanofasetofobservationsistheiraverage-thesumoftheobservedvaluesdividedbythenumberofobservations.PopulationMeanSampleMeanm==?xNiN1xxnin==?1ArithmeticMeanorAveragexxnin====?1317201585.Sales
96121013151614141617162421221819182017317Example–Mean(DataisusedfromExample1-2)Seeslide#21forthetemplateoutput
.
.
..
.
.
:.
:
:
:
.
.
.
.
.
---------------------------------------------------------------6910121314151617181920212224MedianandMode=16Mean=15.85Example-Mode(DataisusedfromExample1-2)Seeslide#21forthetemplateoutputRangeDifferencebetweenmaximumandminimumvaluesInterquartileRangeDifferencebetweenthirdandfirstquartile(Q3-Q1)VarianceAverage*ofthesquareddeviationsfromthemeanStandardDeviationSquarerootofthevarianceDefinitionsofpopulationvarianceandsamplevariancedifferslightly.1-4MeasuresofVariabilityorDispersion
SortedSales Sales Rank9 6 16 9 212 10 310 12 413 13 515 14 616 14 714 15 814 16 916 16 1017 16 1116 17 1224 17 1321 18 1422 18 1518 19 1619 20 1718 21 1820 22 1917 24 20FirstQuartileThirdQuartileQ1=13+(.25)(1)=13.25Q3=18+(.75)(1)=18.75MinimumMaximumRange:Maximum-Minimum=
24-6=18InterquartileRange:Q3-Q1=
18.75-13.25=5.5Example-RangeandInterquartileRange(DataisusedfromExample1-2)Seeslide#21forthetemplateoutputVarianceandStandardDeviation()smss22121221=-=-===??=?()xNxNNiNiNxiNPopulationVariance()()sxxnxxnnssininin2212122111=-?-=-?-====?()SampleVariance()
6 -9.85 97.0225 369 -6.85 46.9225 8110 -5.85 34.2225 10012 -3.85 14.8225 14413 -2.85 8.122516914 -1.85 3.4225 19614 -1.85 3.4225 19615 -0.85 0.7225 22516 0.15 0.0225 25616 0.15 0.0225 25616 0.15 0.0225 25617 1.15 1.3225 28917 1.15 1.3225 28918 2.15 4.6225 32418 2.15 4.6225 32419 3.15 9.9225 36120 4.15 17.2225 40021 5.15 26.5225 44122 6.15 37.8225 48424 8.15 66.4225 576317 0 378.55005403CalculationofSampleVariance(n+1)P/100QuartilesExample:SampleVarianceUsingtheTemplateNote:Thisisjustareplicationofslide#21.DividingdataintogroupsorclassesorintervalsGroupsshouldbe:MutuallyexclusiveNotoverlapping-everyobservationisassignedtoonlyonegroupExhaustiveEveryobservationisassignedtoagroupEqual-width
(ifpossible)Firstorlastgroupmaybeopen-ended1-5GroupDataandtheHistogramTablewithtwocolumnslisting:EachandeverygrouporclassorintervalofvaluesAssociatedfrequencyofeachgroupNumberofobservationsassignedtoeachgroupSumoffrequenciesisnumberofobservationsNforpopulationnforsampleClass
midpoint
isthemiddlevalueofagrouporclassorintervalRelativefrequency
isthepercentageoftotalobservationsineachclassSumofrelativefrequencies=1FrequencyDistribution x f(x) f(x)/nSpendingClass($) Frequency(numberofcustomers) RelativeFrequency0tolessthan100 30 0.163100tolessthan200 38 0.207200tolessthan300 50 0.272300tolessthan400 31 0.168400tolessthan500 22 0.120500tolessthan600 13 0.070 184 1.000
Exampleofrelativefrequency:30/184=0.163Sumofrelativefrequencies=1Example1-7:FrequencyDistribution x F(x) F(x)/nSpendingClass($) CumulativeFrequency CumulativeRelativeFrequency0tolessthan100 30 0.163100tolessthan200 68 0.370200tolessthan300 118 0.641300tolessthan400 149 0.810400tolessthan500 171 0.929500tolessthan600 184 1.000
Thecumulativefrequency
ofeachgroupisthesumofthefrequenciesofthatandallprecedinggroups.CumulativeFrequencyDistributionA
histogram
isachartmadeofbarsofdifferentheights.WidthsandlocationsofbarscorrespondtowidthsandlocationsofdatagroupingsHeightsofbarscorrespondtofrequenciesorrelativefrequenciesofdatagroupingsHistogramFrequencyHistogramHistogramExampleRelativeFrequencyHistogramHistogramExampleSkewnessMeasureofasymmetryofafrequencydistributionSkewedtoleftSymmetricorunskewedSkewedtorightKurtosisMeasureofflatnessorpeakednessofafrequencydistributionPlatykurtic(relativelyflat)Mesokurtic(normal)Leptokurtic(relativelypeaked)1-6SkewnessandKurtosisSkewedtoleftSkewnessSkewnessSymmetricSkewnessSkewedtorightKurtosisPlatykurtic-flatdistributionKurtosisMesokurtic-nottooflatandnottoopeakedKurtosisLeptokurtic
-peakeddistributionChebyshev’sTheoremAppliestoany
distribution,regardlessofshapePlaceslowerlimitsonthepercentagesofobservationswithinagivennumberofstandarddeviationsfromthemeanEmpiricalRuleAppliesonlytoroughlymound-shapedandsymmetricdistributionsSpecifiesapproximatepercentagesofobservationswithinagivennumberofstandarddeviationsfromthemean1-7RelationsbetweentheMeanandStandardDeviationAtleastoftheelementsofany
distributionliewithinkstandarddeviationsofthemean
Atleast
LiewithinStandarddeviationsofthemean234Chebyshev’sTheoremForroughlymound-shapedandsymmetricdistributions,approximately:EmpiricalRulePieChartsCategoriesrepresentedaspercentagesoftotalBarGraphsHeightsofrectanglesrepresentgroupfrequenciesFrequencyPolygons
HeightoflinerepresentsfrequencyOgivesHeightoflinerepresentscumulativefrequencyTimePlotsRepresentsvaluesovertime1-8MethodsofDisplayingDataPieChartBarChart
RelativeFrequencyPolygonOgiveFrequencyPolygonandOgive504030201000.30.20.10.0RelativeFrequencySales504030201001.00.50.0CumulativeRelativeFrequencySales(Cumulativefrequencyorrelativefrequencygraph)OSAJJMAMFJDNOSAJJMAMFJDNOSAJJMAMFJ8.57.56.55.5MonthMillions
of
TonsMonthly
Steel
Production
TimePlotStem-and-LeafDisplaysQuick-and-dirtylistingofallobservationsConveyssomeofthesameinformationasahistogramBoxPlotsMedianLowerandupperquartilesMaximumandminimumTechniquestodeterminerelationshipsandtrends,identifyoutliersandinfluentialobservations,andquicklydescribeorsummarizedatasets.1-9ExploratoryDataAnalysis-EDA
1122355567
201112223467778993012457411257
50236
602Example1-8:Stem-and-LeafDisplayFigure1-17:TaskPerformanceTimesXX*oMedianQ1Q3InnerFenceInnerFenceOuterFenceOuterFenceInterquartileRangeSmallestdatapointnotbelowinnerfenceLargestdatapointnotexceedinginnerfenceSuspectedoutlierOutlierQ1-3(IQR)Q1-1.5(IQR)Q3+1.5(IQR)Q3+3(IQR)ElementsofaBoxPlotBoxPlotExample:BoxPlot1-10UsingtheComputer–TheTemplateOutputwithBasicStatisticsUsingtheComputer–TemplateOutputfortheHistogramFigure1-24UsingtheComputer–TemplateOutputforHistogramsforGroupedDataFigure1-25UsingtheComputer–TemplateOutputforFrequencyPolygons&theOgiveforGroupedDataFigure1-25UsingtheComputer–TemplateOutputforTwoFrequencyPolygonsforGroupedDataFigure1-26UsingtheComputer–PieChartTemplateOutputFigure1-27UsingtheComputer–BarChartTemplateOutputFigure1-28UsingtheComputer–BoxPlotTemplateOutputFigure1-29UsingtheComputer–BoxPlotTemplatetoCompareTwoDataSetsFigure1-30UsingtheComputer–TimePlotTemplate
Figure1-31UsingtheComputer–TimePlotComparisonTemplate
Figure1-32ScatterPlotsScatterPlotsareusedtoidentifyandreportanyunderlyingrelationshipsamongpairsofdatasets.Theplotconsistsofascatterofpoints,eachpointrepresentinganobservation.ScatterPlots
Scatterplotwithtrendline.Thistypeofrelationshipisknownasapositivecorrelation.Correlationwillbediscussedinlaterchapters.COMPLETE
BUSINESS
STATISTICSbyAMIRD.ACZEL&JAYAVELSOUNDERPANDIAN6thedition.Chapter2ProbabilityUsingStatisticsBasicDefinitions:Events,SampleSpace,andProbabilitiesBasicRulesforProbabilityConditionalProbabilityIndependenceofEventsCombinatorialConceptsTheLawofTotalProbabilityandBayes’TheoremJointProbabilityTableUsingtheComputerProbability2Defineprobability,samplespace,andevent.Distinguishbetweensubjectiveandobjectiveprobability.Describethecomplementofanevent,theintersection,andtheunionoftwoevents.Computeprobabilitiesofvarioustypesofevents.Explaintheconceptofconditionalprobabilityandhowtocomputeit.Describepermutationandcombinationandtheiruseincertainprobabilitycomputations.ExplainBayes’theoremanditsapplications.LEARNINGOBJECTIVESAfterstudyingthischapter,youshouldbeableto:22-1Probabilityis:AquantitativemeasureofuncertaintyAmeasureofthestrengthofbelief
intheoccurrenceofanuncertaineventAmeasureofthedegreeofchanceorlikelihoodofoccurrence
ofanuncertaineventMeasuredbyanumberbetween0and1(orbetween0%and100%)TypesofProbability
ObjectiveorClassicalProbabilitybasedonequally-likelyeventsbasedonlong-runrelativefrequencyofeventsnotbasedonpersonalbeliefsisthesameforallobservers(objective)examples:tossacoin,throwadie,pickacardTypesofProbability(Continued)SubjectiveProbabilitybasedonpersonalbeliefs,experiences,prejudices,intuition-personaljudgmentdifferentforallobservers(subjective)examples:SuperBowl,elections,newproductintroduction,snowfallSet-acollectionofelementsorobjectsofinterestEmptyset(denotedby)
asetcontainingnoelementsUniversalset(denotedbyS)asetcontainingallpossibleelementsComplement(Not).ThecomplementofAisasetcontainingallelementsofSnotinA2-2BasicDefinitionsComplementofaSetASVennDiagramillustratingtheComplementofaneventIntersection
(And)asetcontainingallelementsinbothAandBUnion
(Or)asetcontainingallelementsinAorBorbothBasicDefinitions(Continued)Sets:AIntersectingwithBABSSets:AUnionBABSMutuallyexclusiveordisjointsetssetshavingnoelementsincommon,havingnointersection,whoseintersectionistheemptysetPartitionacollectionofmutuallyexclusivesetswhichtogetherincludeallpossibleelements,whoseunionistheuniversalsetBasicDefinitions(Continued)MutuallyExclusiveorDisjointSetsABSSetshavenothingincommonSets:PartitionA1A2A3A4A5SProcessthatleadstooneofseveralpossibleoutcomes
*,e.g.:CointossHeads,TailsThrowdie1,2,3,4,5,6PickacardAH,KH,QH,...IntroduceanewproductEachtrialofanexperimenthasasingleobservedoutcome.Thepreciseoutcomeofarandomexperimentisunknownbeforeatrial.
*Alsocalledabasicoutcome,elementaryevent,orsimpleeventExperimentSampleSpaceorEventSetSetofallpossibleoutcomes(universalset)foragivenexperimentE.g.:Rollaregularsix-sideddieS={1,2,3,4,5,6}EventCollectionofoutcomeshavingacommoncharacteristicE.g.:Evennumber
A={2,4,6}
EventAoccursifanoutcomeinthesetAoccursProbabilityofaneventSumoftheprobabilitiesoftheoutcomesofwhichitconsistsP(A)=P(2)+P(4)+P(6)Events:DefinitionForexample:ThrowadieSixpossibleoutcomes{1,2,3,4,5,6}Ifeachisequally-likely,theprobabilityofeachis1/6=0.1667=16.67%
Probabilityofeachequally-likelyoutcomeis1dividedbythenumberofpossibleoutcomesEventA(evennumber)P(A)=P(2)+P(4)+P(6)=1/6+1/6+1/6=1/2foreinAEqually-likelyProbabilities
(HypotheticalorIdealExperiments)PickaCard:SampleSpaceEvent‘Ace’UnionofEvents‘Heart’and‘Ace’Event‘Heart’Theintersectionoftheevents‘Heart’and‘Ace’comprisesthesinglepointcircledtwice:theaceofheartsHeartsDiamondsClubsSpadesAAAAKKKKQQQQJJJJ1010101099998888777766665555444433332222RangeofValuesforP(A):Complements
-Probabilityof
not
AIntersection
-ProbabilityofbothA
and
BMutuallyexclusiveevents(AandC):2-3BasicRulesforProbabilityUnion
-ProbabilityofAor
Borboth(ruleofunions)Mutuallyexclusiveevents:IfAandBaremutuallyexclusive,thenBasicRulesforProbability(Continued)Sets:P(AUnionB)ABSConditionalProbability
-ProbabilityofAgivenBIndependentevents:2-4ConditionalProbabilityRulesofconditionalprobability:IfeventsAandDarestatisticallyindependent:sosoConditionalProbability(continued)AT&TIBMTotalTelecommunication401050Computers203050Total6040100CountsAT&TIBMTotalTelecommunication.40.10.50Computers.20.30.50Total.60.401.00ProbabilitiesProbabilitythataprojectisundertakenbyIBMgivenitisatelecommunicationsproject:ContingencyTable-Example2-2ConditionsforthestatisticalindependenceofeventsAandB:2-5IndependenceofEventsEventsTelevision(T)andBillboard(B)areassumedtobeindependent.IndependenceofEvents–
Example2-5Theprobabilityoftheunionofseveralindependenteventsis1minustheproductofprobabilitiesoftheircomplements:Example2-7:Theprobabilityoftheintersectionofseveralindependenteventsistheproductoftheirseparateindividualprobabilities:ProductRulesforIndependentEventsConsiderapairofsix-sideddice.Therearesixpossibleoutcomesfromthrowingthefirstdie{1,2,3,4,5,6}andsixpossibleoutcomesfromthrowingtheseconddie{1,2,3,4,5,6}.Altogether,thereare6*6=36possibleoutcomesfromthrowingthetwodice.Ingeneral,ifthereareneventsandtheeventicanhappeninNipossibleways,thenthenumberofwaysinwhichthesequenceofneventsmayoccurisN1N2...Nn.Pick5cardsfromadeckof52-withreplacement52*52*52*52*52=525380,204,032differentpossibleoutcomesPick5cardsfromadeckof52-withoutreplacement52*51*50*49*48=311,875,200differentpossibleoutcomes2-6CombinatorialConcepts.....Ordertheletters:A,B,andCABCBCABACACBCBA...........ABCACBBACBCACABCBAMoreonCombinatorialConcepts
(TreeDiagram)Howmanywayscanyouorderthe3lettersA,B,andC?Thereare3choicesforthefirstletter,2forthesecond,and1forthelast,sothereare3*2*1=6possiblewaystoorderthethreelettersA,B,andC.Howmanywaysaretheretoorderthe6lettersA,B,C,D,E,andF?(6*5*4*3*2*1=720)Factorial:Foranypositiveintegern,wedefinenfactorial
as:n(n-1)(n-2)...(1).Wedenotenfactorialasn!.Thenumbern!isthenumberofwaysinwhichnobjectscanbeordered.Bydefinition1!=1and0!=1.FactorialPermutationsarethepossibleorderedselectionsofrobjectsoutofatotalofnobjects.ThenumberofpermutationsofnobjectstakenratatimeisdenotedbynPr,whereWhatifwechoseonly3outofthe6lettersA,B,C,D,E,andF?Thereare6waystochoosethefirstletter,5waystochoosethesecondletter,and4waystochoosethethirdletter(leaving3lettersunchosen).Thatmakes6*5*4=120possibleorderingsorpermutations.Permutations(Orderisimportant)Combinations
arethepossibleselectionsofritemsfromagroupofnitemsregardlessoftheorderofselection.Thenumberofcombinationsisdenotedandisreadasnchooser.AnalternativenotationisnCr.Wedefinethenumberofcombinationsofroutofnelementsas:Supposethatwhenwepick3lettersoutofthe6lettersA,B,C,D,E,andFwechoseBCD,orBDC,orCBD,orCDB,orDBC,orDCB.(Thesearethe6(3!)permutationsororderingsofthe3lettersB,C,andD.)Buttheseareorderingsofthesamecombinationof3letters.Howmanycombinationsof6differentletters,taking3atatime,arethere?Combinations(OrderisnotImportant)Example:TemplateforCalculatingPermutations&CombinationsIntermsofconditionalprobabilities:Moregenerally(whereBimakeupapartition):2-7TheLawofTotalProbabilityandBayes’TheoremThelawoftotalprobability:EventU:StockmarketwillgoupinthenextyearEventW:EconomywilldowellinthenextyearTheLawofTotalProbability-
Example2-9Bayes’theoremenablesyou,knowingjustalittlemorethantheprobabilityofAgivenB,tofindtheprobabilityofBgivenA.Basedonthedefinitionofconditionalprobabilityandthelawoftotalprobability.ApplyingthelawoftotalprobabilitytothedenominatorApplyingthedefinitionofconditionalprobabilitythroughoutBayes’TheoremAmedicaltestforararedisease(affecting0.1%ofthepopulation[])isimperfect:Whenadministeredtoanillperson,thetestwillindicatesowithprobability0.92[]TheeventisafalsenegativeWhenadministeredtoapersonwhoisnotill,thetestwillerroneouslygiveapositiveresult(falsepositive)withprobability0.04[]Theeventisafalsepositive..Bayes’Theorem-Example2-10Example2-10(continued)PriorProbabilitiesConditionalProbabilitiesJointProbabilitiesExample2-10(TreeDiagram)GivenapartitionofeventsB1,B2,...,Bn:ApplyingthelawoftotalprobabilitytothedenominatorApplyingthedefinitionofconditionalprobabilitythroughoutBayes’TheoremExtendedAneconomistbelievesthatduringperiodsofhigheconomicgrowth,theU.S.dollarappreciateswithprobability0.70;inperio
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國(guó)推拉式夾具數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)拉片式光源濾光片數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)固定式超聲波流量計(jì)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 二零二五年度加油站與旅游企業(yè)合作合同
- 二零二五年度體育健身場(chǎng)所租賃經(jīng)營(yíng)合同
- 二零二五年度工業(yè)氣體市場(chǎng)拓展與品牌推廣合同
- 2025年度泳池救生員安全責(zé)任書(shū)與安全操作流程協(xié)議
- 2025年度智慧社區(qū)年建合作協(xié)議書(shū)
- 二零二五年度特殊教育機(jī)構(gòu)教職工勞動(dòng)合同
- 2025年度餐廳經(jīng)營(yíng)權(quán)轉(zhuǎn)讓及綠色環(huán)保技術(shù)應(yīng)用合同
- 2025年寶雞職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及完整答案1套
- 2025年車(chē)位買(mǎi)賣(mài)合同模板電子版
- AI創(chuàng)作指令合集系列之-教案寫(xiě)作指令
- 急危重癥護(hù)理學(xué)第十章環(huán)境及理化因素?fù)p傷的救護(hù)
- 常用臨床檢驗(yàn)結(jié)果解讀
- 第18課排序計(jì)算有方法(教案)四年級(jí)全一冊(cè)信息技術(shù)人教版
- 規(guī)?;i場(chǎng)生物安全
- 2025年春節(jié)后復(fù)產(chǎn)復(fù)工方案及安全技術(shù)措施
- 維修基金使用合同范例
- 2024年全國(guó)中學(xué)生生物學(xué)聯(lián)賽試題含答案
- 預(yù)防性侵安全教育主題課件
評(píng)論
0/150
提交評(píng)論