




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
初二數(shù)學教案大全2023初二數(shù)學教案大全七篇
初二數(shù)學教案都有哪些?教案的作用,同學能在什么地方消失問題,大都會消失什么問題,怎樣引導,要考慮幾種教學方案。消失打亂教案現(xiàn)象,也不要緊急。要因勢利導,急躁細致地培育同學的進取精神。下面是我為大家?guī)淼?023初二數(shù)學教案大全七篇,盼望大家能夠喜愛!
2023初二數(shù)學教案大全(篇1)
教學目標:
1、理解運用平方差公式分解因式的方法。
2、把握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培育同學綜合、分析數(shù)學問題的力量。
教學重點:
運用平方差公式分解因式。
教學難點:
高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的敏捷運用。
教學案例:
我們數(shù)學組的觀課議課主題:
1、關(guān)注同學的合作溝通
2、如何使學困生能樂觀參加課堂溝通。
在細心備課過程中,我設計了這樣的自學提示:
1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、試總結(jié)運用平方差公式因式分解的條件是什么?
4、仿按例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結(jié)因式分解的步驟是什么?
師巡回指導,生自主探究后溝通合作。
生溝通熱忱很高,但把全部問題分析完已用了30分鐘。
生展現(xiàn)自學成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但其次種方法提出負號后,肯定要留意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必需化為兩個數(shù)或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能連續(xù)分解為a+b)(a-b)
師:大家爭辯的很好,運用平方差公式分解因式,必需化為兩個數(shù)或兩個整式的平方的差的形式,另因式分解必需分解到不能再分解為止?!?/p>
反思:這節(jié)課我備課比較仔細,自學提示的設計也動了一番腦筋,為讓同學順當?shù)贸鲞\用平方差公式因式分解的條件,我設計了問題2,為讓同學能更簡單總結(jié)因式分解的步驟,我又設計了問題4,自認為,本節(jié)課肯定會上的特別勝利,同學的溝通、合作,自學展現(xiàn)肯定會很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按方案完成教學任務,同學練習很少,作業(yè)有很大一部分同學不能獨立完成,反思這節(jié)課主要有以下幾個問題:
(1)我在備課時,過高估量了同學的力量,問題2中的③、④、⑤多數(shù)同學剛預習后不能嫻熟解答,導致在小組溝通時,多數(shù)同學都在溝通這幾題該怎樣分解,耽擱了珍貴的時間,也分散了同學的留意力,導致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)老師備課時,要考慮同學的學問層次,力量水平,真正把同學放在第一位,要考慮同學的接受力量,支配習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡潔的,像④、⑤可到練習時再消失,發(fā)覺問題后再強調(diào)、歸納,效果也可能會更好。
我準時調(diào)整了自學提示的內(nèi)容,在另一個班也上了這節(jié)課。果真,同學的爭論有了重點,很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛特別活躍,練習量大,精確?????率高,但隨之我又發(fā)覺我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開頭緊急地練習……下課后,無意間發(fā)覺竟還有好幾個同學課后題沒做。緣由是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,緣由是上課慌著展現(xiàn)自己,沒顧上改……。看來,以后上課不能單聽同學的齊答,要發(fā)揮組長的職責,注意過關(guān)落實。給同學一點機動時間,讓學習有困難的同學有機會釋疑,練習不在于多,要留意融會貫穿,會舉一反三。
2023初二數(shù)學教案大全(篇2)
教學目標
1、理解用配方法解一元二次方程的基本步驟。
2、會用配方法解二次項系數(shù)為1的一元二次方程。
3、進一步體會化歸的思想方法。
重點難點
重點:會用配方法解一元二次方程.
難點:使一元二次方程中含未知數(shù)的項在一個完全平方式里。
教學過程
(一)復習引入
1、用配方法解方程x2+x-1=0,同學練習后再完成課本P.13的“做一做”.
2、用配方法解二次項系數(shù)為1的一元二次方程的基本步驟是什么?
(二)創(chuàng)設情境
現(xiàn)在我們已經(jīng)會用配方法解二次項系數(shù)為1的一元二次方程,而對于二次項系數(shù)不為1的一元二次方程能不能用配方法解?
怎樣解這類方程:2x2-4x-6=0
(三)探究新知
讓同學議一議解方程2x2-4x-6=0的方法,然后總結(jié)得出:對于二次項系數(shù)不為1的一元二次方程,可將方程兩邊同除以二次項的系數(shù),把二次項系數(shù)化為1,然后按上一節(jié)課所學的方法來解。讓同學進一步體會化歸的思想。
(四)講解例題
1、展現(xiàn)課本P.14例8,按課本方式講解。
2、引導同學完成課本P.14例9的填空。
3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項系數(shù)是1的一般形式;其次加上一次項系數(shù)的一半的平方,再減去這個數(shù),使得含未知數(shù)的項在一個完全平方式里;最終將配方后的一元二次方程用因式分解法或直接開平方法來解。
(五)應用新知
課本P.15,練習。
(六)課堂小結(jié)
1、用配方法解一元二次方程的基本步驟是什么?
2、配方法是一種重要的數(shù)學方法,它的重要性不僅僅表現(xiàn)在一元二次方程的解法中,在今后學習二次函數(shù),高中學習二次曲線時都要常常用到。
3、配方法是解一元二次方程的通法,但是由于配方的過程要進行較繁瑣的運算,在解一元二次方程時,實際運用較少。
4、按圖1—l的框圖小結(jié)前面所學解
一元二次方程的算法。
(七)思索與拓展
不解方程,只通過配方判定下列方程解的
狀況。
(1)4x2+4x+1=0;(2)x2-2x-5=0;
(3)–x2+2x-5=0;
[解]把各方程分別配方得
(1)(x+)2=0;
(2)(x-1)2=6;
(3)(x-1)2=-4
由此可得方程(1)有兩個相等的實數(shù)根,方程(2)有兩個不相等的實數(shù)根,方程(3)沒有實數(shù)根。
點評:通過解答這三個問題,使同學能敏捷運用“配方法”,并強化同學對一元二次方程解的三種狀況的熟悉。
2023初二數(shù)學教案大全(篇3)
一、學習目標:
1.使同學會用完全平方公式分解因式.
2.使同學學習多步驟,多方法的分解因式
二、重點難點:
重點:讓同學把握多步驟、多方法分解因式方法
難點:讓同學學會觀看多項式特點,恰當支配步驟,恰當?shù)剡x用不同方法分解因式
三、合作學習
創(chuàng)設問題情境,引入新課
完全平方公式(a±b)2=a2±2ab+b2
講授新課
1.推導用完全平方公式分解因式的公式以及公式的特點.
將完全平方公式倒寫:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具備這些特點的三項式,就是一個二項式的完全平方,將它寫成平方形式,便實現(xiàn)了因式分解
用語言敘述為:兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.
由分解因式與整式乘法的關(guān)系可以看出,假如把乘法公式反過來,那么就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法.
練一練.下列各式是不是完全平方式?
(1)a2-4a+4;(2)x2+4x+4y2;
(3)4a2+2ab+b2;(4)a2-ab+b2;
四、精講精練
例1、把下列完全平方式分解因式:
(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.
課堂練習:教科書練習
補充練習:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9;(2)4(2a+b)2-12(2a+b)+9;
2023初二數(shù)學教案大全(篇4)
教學目標
1.等腰三角形的概念.2.等腰三角形的性質(zhì).3.等腰三角形的概念及性質(zhì)的應用.
教學重點:1.等腰三角形的概念及性質(zhì).2.等腰三角形性質(zhì)的應用.
教學難點:等腰三角形三線合一的性質(zhì)的理解及其應用.
教學過程
Ⅰ.提出問題,創(chuàng)設情境
在前面的學習中,我們熟悉了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡潔平面圖形關(guān)于某始終線的軸對稱圖形,還能夠通過軸對稱變換來設計一些漂亮的圖案.這節(jié)課我們就是從軸對稱的角度來熟悉一些我們熟識的幾何圖形.來討論:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
有的三角形是軸對稱圖形,有的三角形不是.
問題:那什么樣的三角形是軸對稱圖形?
滿意軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.
我們這節(jié)課就來熟悉一種成軸對稱圖形的三角形──等腰三角形.
Ⅱ.導入新課:要求同學通過自己的思索來做一個等腰三角形.
作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形.
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.
思索:
1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.
2.等腰三角形的兩底角有什么關(guān)系?
3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
結(jié)論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.由于等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.
要求同學把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關(guān)系.
沿等腰三角形的頂角的平分線對折,發(fā)覺它兩旁的部分相互重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.
由此可以得到等腰三角形的性質(zhì):
1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高相互重合(通常稱作“三線合一”).
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學們現(xiàn)在就動手來寫出這些證明過程).
如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,由于
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,由于
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,
求:△ABC各角的度數(shù).
分析:依據(jù)等邊對等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形內(nèi)角和為180°,就可求出△ABC的三個內(nèi)角.
把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.
解:由于AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等邊對等角).
設∠A=x,則∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[師]下面我們通過練習來鞏固這節(jié)課所學的學問.
Ⅲ.隨堂練習:1.課本P51練習1、2、3.2.閱讀課本P49~P51,然后小結(jié).
2023初二數(shù)學教案大全(篇5)
教學目標
1、理解并把握等腰三角形的判定定理及推論
2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.
教學重點:等腰三角形的判定定理及推論的運用
教學難點:正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.
教學過程:
一、復習等腰三角形的性質(zhì)
二、新授:
I提出問題,創(chuàng)設情境
出示投影片.某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質(zhì)專家測得AC的長度就可知河流寬度.
同學們很想知道,這樣估測河流寬度的依據(jù)是什么?帶著這個問題,引導同學學習“等腰三角形的判定”.
II引入新課
1.由性質(zhì)定理的題設和結(jié)論的變化,引出討論的內(nèi)容——在△ABC中,苦∠B=∠C,則AB=AC嗎?
作一個兩個角相等的三角形,然后觀看兩等角所對的邊有什么關(guān)系?
2.引導同學依據(jù)圖形,寫出已知、求證.
2、小結(jié),通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強調(diào)此定理是在一個三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”.
4.引導同學說出引例中地質(zhì)專家的測量方法的依據(jù).
III例題與練習
1.如圖2
其中△ABC是等腰三角形的是[]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(依據(jù)什么?).
②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(依據(jù)什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,推斷圖5中等腰三角形有______.
④若已知AD=4cm,則BC______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例:假如三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.
分析:引導同學依據(jù)題意作出圖形,寫出已知、求證,并分析證明.
練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習:P53練習1、2、3。
IV課堂小結(jié)
1.判定一個三角形是等腰三角形有幾種方法?
2.判定一個三角形是等邊三角形有幾種方法?
3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?
4.現(xiàn)在證明線段相等問題,一般應從幾方面考慮?
V布置作業(yè):P56頁習題12.3第5、6題
2023初二數(shù)學教案大全(篇6)
教學目標
教學學問點:能運用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡潔的實際問題.
力量訓練要求:1.學會觀看圖形,勇于探究圖形間的關(guān)系,培育同學的空間觀念.
2.在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的力量及滲透數(shù)學建模的思想.
情感與價值觀要求:1.通過好玩的問題提高學習數(shù)學的愛好.
2.在解決實際問題的過程中,體驗數(shù)學學習的有用性,體現(xiàn)人人都學有用的數(shù)學.
教學重點難點:
重點:探究、發(fā)覺給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
難點:利用數(shù)學中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學過程
1、創(chuàng)設問題情境,引入新課:
前幾節(jié)課我們學習了勾股定理,你還記得它有什么作用嗎?
例如:欲登12米高的建筑物,為平安需要,需使梯子底端離建筑物5米,至少需多長的梯子?
依據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.
所以至少需13米長的梯子.
2、講授新課:①、螞蟻怎么走最近
出示問題:有一個圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的的最短路程是多少?(π的值取3).
(1)同學們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側(cè)面畫出幾條路線,你覺得哪條路線最短呢?(小組爭論)
(2)如圖,將圓柱側(cè)面剪開綻開成一個長方形,從A點到B點的最短路線是什么?你畫對了嗎?
(3)螞蟻從A點動身,想吃到B點上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?(同學分組爭論,公布結(jié)果)
我們知道,圓柱的側(cè)面綻開圖是一長方形.好了,現(xiàn)在咱們就用剪刀沿母線AA′將圓柱的側(cè)面綻開(如下圖).
我們不難發(fā)覺,剛才幾位同學的走法:
(1)A→A′→B;(2)A→B′→B;
(3)A→D→B;(4)A—→B.
哪條路線是最短呢?你畫對了嗎?
第(4)條路線最短.由于“兩點之間的連線中線段最短”.
②、做一做:教材14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結(jié)BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很明顯,這是一個需用勾股定理的逆定理來解決的實際問題.
③、隨堂練習
出示投影片
1.甲、乙兩位探險者,到沙漠進行探險.某日早晨8∶00甲先動身,他以6千米/時的速度向東行走.1時后乙動身,他以5千米/時的速度向北行進.上午10∶00,甲、乙兩人相距多遠?
2.如圖,有一個高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應有多長?
1.分析:首先我們需要依據(jù)題意將實際問題轉(zhuǎn)化成數(shù)學模型.
解:(如圖)依據(jù)題意,可知A是甲、乙的動身點,10∶00時甲到達B點,則AB=2×6=12(千米);乙到達C點,則AC=1×5=5(千米).
在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.
2.分析:從題意可知,沒有告知鐵棒是如何插入油桶中,因而鐵棒的長是一個取值范圍而不是固定的長度,所以鐵棒最長時,是插入至底部的A點處,鐵棒最短時是垂直于底面時.
解:設伸入油桶中的長度為x米,則應求最長時和最短時的值.
(1)x2=1.52+22,x2=6.25,x=2.5
所以最長是2.5+0.5=3(米).
(2)x=1.5,最短是1.5+0.5=2(米).
答:這根鐵棒的長應在2~3米之間(包含2米、3米).
3.試一試(課本P15)
在我國古代數(shù)學著作《九章算術(shù)》中記載了一道好玩的問題,這個問題的意思是:有一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 21670-2025乘用車制動系統(tǒng)技術(shù)要求及試驗方法
- JIS D 9111-2010 自行車.分類和基本特性
- 別墅使用手冊
- 北師大版歷史七年級1至7課導學案
- (高清版)DB34∕T 5196-2025 生態(tài)濕地蓄洪區(qū)植被恢復技術(shù)導則
- 安全生產(chǎn)月工作總結(jié)
- 鼻炎膠囊改善鼻炎牙周病并發(fā)癥的療效
- 兒童飲食和營養(yǎng)要點
- 北京市豐臺區(qū)2024-2025學年高二下學期4月期中考試政治試題
- 小店區(qū)工程預算活動方案
- 農(nóng)民工工資保障措施★
- 2023-2024學年四川省阿壩州小學語文四年級期末深度自測試卷詳細參考答案解析
- 8D報告樣板(設備故障的8D報告)
- 物業(yè)交接表格全模板
- (完整word版)省級溫室氣體清單編制指南
- 2023年《不動產(chǎn)登記法律制度政策》考點速記速練300題(詳細解析)
- 當代世界政治經(jīng)濟與國際關(guān)系 鄧澤宏課件第一章國際政治與世界格局
- MT 285-1992縫管錨桿
- JJG 1038-2008科里奧利質(zhì)量流量計
- GB/T 7759-1996硫化橡膠、熱塑性橡膠常溫、高溫和低溫下壓縮永久變形測定
- GB/T 3048.5-2007電線電纜電性能試驗方法第5部分:絕緣電阻試驗
評論
0/150
提交評論